Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01205
Cited By
v1
v2 (latest)
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks
3 May 2019
Dongkun Zhang
Ling Guo
George Karniadakis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks"
10 / 60 papers shown
Title
Physics Informed Deep Kernel Learning
Ziyi Wang
Wei W. Xing
Robert M. Kirby
Shandian Zhe
PINN
53
10
0
08 Jun 2020
RoeNets: Predicting Discontinuity of Hyperbolic Systems from Continuous Data
S. Xiong
Xingzhe He
Yunjin Tong
Runze Liu
Bo Zhu
AI4CE
16
4
0
07 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
135
85
0
04 Jun 2020
Neural Network Solutions to Differential Equations in Non-Convex Domains: Solving the Electric Field in the Slit-Well Microfluidic Device
M. Magill
Andrew M. Nagel
H. D. de Haan
29
7
0
25 Apr 2020
Structure-preserving neural networks
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
129
71
0
09 Apr 2020
On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs
Yeonjong Shin
Jérome Darbon
George Karniadakis
PINN
73
79
0
03 Apr 2020
Mean-Field and Kinetic Descriptions of Neural Differential Equations
Michael Herty
T. Trimborn
G. Visconti
118
6
0
07 Jan 2020
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
90
456
0
23 Sep 2019
Learning the Tangent Space of Dynamical Instabilities from Data
Antoine Blanchard
T. Sapsis
134
8
0
24 Jul 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
101
1,554
0
10 Jul 2019
Previous
1
2