Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01205
Cited By
v1
v2 (latest)
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks
3 May 2019
Dongkun Zhang
Ling Guo
George Karniadakis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks"
50 / 60 papers shown
Title
A comprehensive analysis of PINNs: Variants, Applications, and Challenges
Afila Ajithkumar Sophiya
Akarsh K Nair
S. Maleki
S. Krishnababu
PINN
AI4CE
31
0
0
28 May 2025
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
160
2
0
30 Mar 2025
Multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation overcome the curse of dimensionality when approximating semilinear parabolic partial differential equations in
L
p
L^p
L
p
-sense
Ariel Neufeld
Tuan Anh Nguyen
83
0
0
30 Sep 2024
Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
Youngsik Hwang
Dong-Young Lim
AI4CE
117
3
0
27 Sep 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
97
7
0
08 May 2024
Architectural Strategies for the optimization of Physics-Informed Neural Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
AI4CE
73
0
0
05 Feb 2024
An Operator Learning Framework for Spatiotemporal Super-resolution of Scientific Simulations
Valentin Duruisseaux
Amit Chakraborty
AI4CE
74
1
0
04 Nov 2023
Adversarial Training for Physics-Informed Neural Networks
Yao Li
Shengzhu Shi
Zhichang Guo
Boying Wu
AAML
PINN
75
0
0
18 Oct 2023
Time integration schemes based on neural networks for solving partial differential equations on coarse grids
Xinxin Yan
Zhideng Zhou
Xiaohan Cheng
Xiaolei Yang
AI4TS
AI4CE
56
0
0
16 Oct 2023
Deep learning soliton dynamics and complex potentials recognition for 1D and 2D PT-symmetric saturable nonlinear Schrödinger equations
Jin Song
Ilya Shenbin
125
27
0
29 Sep 2023
Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones
Christian Berger
Sadok Ben Toumia
Zijian Zhou
Zhenya Yan
PINN
70
10
0
29 Sep 2023
Physics informed Neural Networks applied to the description of wave-particle resonance in kinetic simulations of fusion plasmas
J. Kumar
D. Zarzoso
V. Grandgirard
Jana Ebert
Stefan Kesselheim
PINN
44
1
0
23 Aug 2023
Tackling the Curse of Dimensionality with Physics-Informed Neural Networks
Zheyuan Hu
K. Shukla
George Karniadakis
Kenji Kawaguchi
PINN
AI4CE
174
103
0
23 Jul 2023
Efficient Error Certification for Physics-Informed Neural Networks
Francisco Eiras
Adel Bibi
Rudy Bunel
Krishnamurthy Dvijotham
Philip Torr
M. P. Kumar
PINN
93
1
0
17 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
82
11
0
27 Apr 2023
Splitting physics-informed neural networks for inferring the dynamics of integer- and fractional-order neuron models
S. Shekarpaz
Fanhai Zeng
G. Karniadakis
PINN
62
5
0
26 Apr 2023
Estimating Failure Probability with Neural Operator Hybrid Approach
Mujing Li
Yani Feng
Guanjie Wang
16
2
0
24 Apr 2023
On the Limitations of Physics-informed Deep Learning: Illustrations Using First Order Hyperbolic Conservation Law-based Traffic Flow Models
Archie J. Huang
S. Agarwal
AI4CE
PINN
71
25
0
23 Feb 2023
Physics-Informed Koopman Network
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
AI4CE
84
3
0
17 Nov 2022
SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition
Yihang Gao
Ka Chun Cheung
Michael K. Ng
63
16
0
16 Nov 2022
Physics-informed neural networks for operator equations with stochastic data
Paul Escapil-Inchauspé
G. A. Ruz
92
2
0
15 Nov 2022
Bayesian deep learning framework for uncertainty quantification in high dimensions
Jeahan Jung
Minseok Choi
BDL
UQCV
53
1
0
21 Oct 2022
Asymptotic-Preserving Neural Networks for hyperbolic systems with diffusive scaling
Giulia Bertaglia
AI4CE
50
5
0
17 Oct 2022
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
49
0
0
29 Sep 2022
A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge
Liron Simon Keren
A. Liberzon
Teddy Lazebnik
112
83
0
13 Sep 2022
Wave simulation in non-smooth media by PINN with quadratic neural network and PML condition
Yanqi Wu
H. Aghamiry
S. Operto
Jianwei Ma
39
1
0
16 Aug 2022
PIAT: Physics Informed Adversarial Training for Solving Partial Differential Equations
S. Shekarpaz
Mohammad Azizmalayeri
M. Rohban
38
4
0
14 Jul 2022
Asymptotic-Preserving Neural Networks for multiscale hyperbolic models of epidemic spread
Giulia Bertaglia
Chuan Lu
L. Pareschi
Xueyu Zhu
AI4CE
50
20
0
25 Jun 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
131
41
0
16 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
76
14
0
06 May 2022
RAR-PINN algorithm for the data-driven vector-soliton solutions and parameter discovery of coupled nonlinear equations
Shulan Qin
Min Li
Tao Xu
Shaotong Dong
100
9
0
29 Apr 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Ziyi Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
95
15
0
24 Feb 2022
Learning Stochastic Dynamics with Statistics-Informed Neural Network
Yuanran Zhu
Yunhao Tang
Changho Kim
87
19
0
24 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
134
1,293
0
14 Jan 2022
Data-driven discoveries of Bäcklund transforms and soliton evolution equations via deep neural network learning schemes
Zijian Zhou
Li Wang
Weifang Weng
Zhenya Yan
63
19
0
18 Nov 2021
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
91
473
0
01 Nov 2021
Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics
Xiaotian Jiang
Danshi Wang
Qirui Fan
Min Zhang
Chao Lu
A. Lau
AI4CE
PINN
39
85
0
01 Sep 2021
Quantum Quantile Mechanics: Solving Stochastic Differential Equations for Generating Time-Series
Annie E. Paine
V. Elfving
Oleksandr Kyriienko
62
23
0
06 Aug 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
Suryanarayana Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
87
83
0
02 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
133
204
0
26 Jun 2021
Learning Green's Functions of Linear Reaction-Diffusion Equations with Application to Fast Numerical Solver
Yuankai Teng
Xiaoping Zhang
Zhu Wang
L. Ju
90
14
0
23 May 2021
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
96
1,213
0
20 May 2021
Neural network architectures using min-plus algebra for solving certain high dimensional optimal control problems and Hamilton-Jacobi PDEs
Jérome Darbon
P. Dower
Tingwei Meng
46
22
0
07 May 2021
Physics Informed Convex Artificial Neural Networks (PICANNs) for Optimal Transport based Density Estimation
Amanpreet Singh
Martin Bauer
S. Joshi
OT
32
1
0
02 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
102
522
0
09 Feb 2021
Data-driven peakon and periodic peakon travelling wave solutions of some nonlinear dispersive equations via deep learning
Li Wang
Zhenya Yan
115
48
0
12 Jan 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
117
153
0
22 Dec 2020
Deep learning based numerical approximation algorithms for stochastic partial differential equations and high-dimensional nonlinear filtering problems
C. Beck
S. Becker
Patrick Cheridito
Arnulf Jentzen
Ariel Neufeld
57
11
0
02 Dec 2020
A physics-informed operator regression framework for extracting data-driven continuum models
Ravi G. Patel
N. Trask
M. Wood
E. Cyr
AI4CE
86
105
0
25 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
143
928
0
28 Jul 2020
1
2
Next