Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.03673
Cited By
Stein Point Markov Chain Monte Carlo
9 May 2019
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stein Point Markov Chain Monte Carlo"
27 / 27 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
81
1
0
26 Apr 2025
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
46
1
0
12 Jun 2024
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
7
0
28 Jan 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
40
12
0
27 Jan 2023
Proposal of a Score Based Approach to Sampling Using Monte Carlo Estimation of Score and Oracle Access to Target Density
Curtis McDonald
Andrew R. Barron
DiffM
28
3
0
06 Dec 2022
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
53
14
0
26 Sep 2022
Model predictivity assessment: incremental test-set selection and accuracy evaluation
E. Fekhari
Bertrand Iooss
Joseph Muré
L. Pronzato
M. Rendas
18
13
0
08 Jul 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
33
25
0
20 Mar 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng-Wei Zhang
42
4
0
18 Jan 2022
Stein Variational Probabilistic Roadmaps
Alexander Lambert
Brian Hou
Rosario Scalise
S. Srinivasa
Byron Boots
22
8
0
04 Nov 2021
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
36
29
0
04 Oct 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
41
2
0
13 Sep 2021
Entropy Regularized Motion Planning via Stein Variational Inference
Alexander Lambert
Byron Boots
43
12
0
11 Jul 2021
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
35
4
0
23 Jun 2021
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
19
50
0
20 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
22
35
0
07 May 2021
A Unifying and Canonical Description of Measure-Preserving Diffusions
Alessandro Barp
So Takao
M. Betancourt
Alexis Arnaudon
Mark Girolami
24
17
0
06 May 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
27
74
0
15 Apr 2021
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
22
17
0
30 Mar 2021
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
30
37
0
06 Jul 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Chandrajit L. Bajaj
Qiang Liu
25
62
0
28 Oct 2019
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
33
90
0
19 Jun 2019
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
0
0
08 Jun 2018
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
109
324
0
09 Feb 2016
1