Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04062
Cited By
A Contrastive Divergence for Combining Variational Inference and MCMC
10 May 2019
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Contrastive Divergence for Combining Variational Inference and MCMC"
20 / 20 papers shown
Title
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Peiyu Yu
Y. Zhu
Sirui Xie
Xiaojian Ma
Ruiqi Gao
Song-Chun Zhu
Ying Nian Wu
DiffM
39
12
0
05 Oct 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
29
1
0
26 Sep 2023
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
39
8
0
13 Jun 2022
PAVI: Plate-Amortized Variational Inference
Louis Rouillard
Thomas Moreau
Demian Wassermann
33
1
0
10 Jun 2022
Parallel Tempering With a Variational Reference
Nikola Surjanovic
Saifuddin Syed
Alexandre Bouchard-Côté
Trevor Campbell
31
11
0
31 May 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
Henry Lam
A. Meisami
Haofeng Zhang
38
4
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
33
34
0
08 Jul 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
30
40
0
30 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
Stein Variational Gradient Descent: many-particle and long-time asymptotics
Nikolas Nusken
D. M. Renger
36
22
0
25 Feb 2021
Improved Contrastive Divergence Training of Energy Based Models
Yilun Du
Shuang Li
J. Tenenbaum
Igor Mordatch
43
139
0
02 Dec 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
138
48
0
20 Oct 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
22
16
0
01 Jul 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
A bi-partite generative model framework for analyzing and simulating large scale multiple discrete-continuous travel behaviour data
Melvin Wong
Bilal Farooq
22
24
0
18 Jan 2019
MCMC using Hamiltonian dynamics
Radford M. Neal
192
3,268
0
09 Jun 2012
1