Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.04943
Cited By
Universal Invariant and Equivariant Graph Neural Networks
13 May 2019
Nicolas Keriven
Gabriel Peyré
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal Invariant and Equivariant Graph Neural Networks"
26 / 76 papers shown
Title
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
24
64
0
12 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
15
121
0
08 Jun 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
21
158
0
07 Sep 2020
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
20
12
0
31 Aug 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
22
111
0
28 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
46
424
0
16 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
28
132
0
20 Feb 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas K. Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
26
303
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
57
319
0
10 Feb 2020
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
13
230
0
08 Feb 2020
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
98
48
0
07 Feb 2020
A Simple Proof of the Universality of Invariant/Equivariant Graph Neural Networks
Takanori Maehara
Hoang NT
19
29
0
09 Oct 2019
On Universal Equivariant Set Networks
Nimrod Segol
Y. Lipman
3DPC
17
63
0
06 Oct 2019
Graph Random Neural Features for Distance-Preserving Graph Representations
Daniele Zambon
C. Alippi
L. Livi
16
1
0
09 Sep 2019
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
20
275
0
29 May 2019
Solving NP-Hard Problems on Graphs with Extended AlphaGo Zero
Kenshi Abe
Zijian Xu
Issei Sato
Masashi Sugiyama
GNN
AI4CE
27
54
0
28 May 2019
Incidence Networks for Geometric Deep Learning
Marjan Albooyeh
Daniele Bertolini
Siamak Ravanbakhsh
GNN
20
26
0
27 May 2019
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
22
562
0
27 May 2019
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,396
0
20 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
162
308
0
05 Nov 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
Previous
1
2