ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05393
  4. Cited By
Population Based Augmentation: Efficient Learning of Augmentation Policy
  Schedules

Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules

14 May 2019
Daniel Ho
Eric Liang
Ion Stoica
Pieter Abbeel
Xi Chen
ArXivPDFHTML

Papers citing "Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules"

34 / 84 papers shown
Title
Low-cost and high-performance data augmentation for deep-learning-based
  skin lesion classification
Low-cost and high-performance data augmentation for deep-learning-based skin lesion classification
Shuwei Shen
Mengjuan Xu
Fan Zhang
Pengfei Shao
Honghong Liu
...
Chi Zhang
Peng Liu
Zhihong Zhang
Peng Yao
Ronald X. Xu
25
10
0
07 Jan 2021
Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation
Unlabeled Data Guided Semi-supervised Histopathology Image Segmentation
Hongxiao Wang
Hao Zheng
Jianxu Chen
Lin Yang
Yizhe Zhang
Danny Chen
MedIm
28
4
0
17 Dec 2020
A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined
  Augmentations Finetuning to Efficiently Improve the Robustness of CNNs
A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs
Nikhil Kapoor
C. Yuan
Jonas Löhdefink
Roland S. Zimmermann
Serin Varghese
Fabian Hüger
Nico M. Schmidt
Peter Schlicht
Tim Fingscheidt
AAML
27
4
0
02 Dec 2020
An Algorithm for Learning Smaller Representations of Models With Scarce
  Data
An Algorithm for Learning Smaller Representations of Models With Scarce Data
Adrian de Wynter
46
2
0
15 Oct 2020
Viewmaker Networks: Learning Views for Unsupervised Representation
  Learning
Viewmaker Networks: Learning Views for Unsupervised Representation Learning
Alex Tamkin
Mike Wu
Noah D. Goodman
SSL
28
64
0
14 Oct 2020
SelfAugment: Automatic Augmentation Policies for Self-Supervised
  Learning
SelfAugment: Automatic Augmentation Policies for Self-Supervised Learning
Colorado Reed
Sean L. Metzger
A. Srinivas
Trevor Darrell
Kurt Keutzer
SSL
27
49
0
16 Sep 2020
Visual Imitation Made Easy
Visual Imitation Made Easy
S. Young
Dhiraj Gandhi
Shubham Tulsiani
Abhinav Gupta
Pieter Abbeel
Lerrel Pinto
22
135
0
11 Aug 2020
OnlineAugment: Online Data Augmentation with Less Domain Knowledge
OnlineAugment: Online Data Augmentation with Less Domain Knowledge
Zhiqiang Tang
Yunhe Gao
Leonid Karlinsky
P. Sattigeri
Rogerio Feris
Dimitris N. Metaxas
19
56
0
17 Jul 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and
  Hyperparameter Optimization
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
30
7
0
11 Jul 2020
Data Augmenting Contrastive Learning of Speech Representations in the
  Time Domain
Data Augmenting Contrastive Learning of Speech Representations in the Time Domain
Eugene Kharitonov
M. Rivière
Gabriel Synnaeve
Lior Wolf
Pierre-Emmanuel Mazaré
Matthijs Douze
Emmanuel Dupoux
28
117
0
02 Jul 2020
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage
  Trees
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage Trees
Ahnjae Shin
Do Yoon Kim
Joo Seong Jeong
Byung-Gon Chun
20
4
0
22 Jun 2020
Meta Approach to Data Augmentation Optimization
Meta Approach to Data Augmentation Optimization
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
32
34
0
14 Jun 2020
Data Augmentation for Graph Neural Networks
Data Augmentation for Graph Neural Networks
Tong Zhao
Yozen Liu
Leonardo Neves
Oliver J. Woodford
Meng Jiang
Neil Shah
GNN
30
407
0
11 Jun 2020
A Simple Semi-Supervised Learning Framework for Object Detection
A Simple Semi-Supervised Learning Framework for Object Detection
Kihyuk Sohn
Zizhao Zhang
Chun-Liang Li
Han Zhang
Chen-Yu Lee
Tomas Pfister
38
493
0
10 May 2020
Improving 3D Object Detection through Progressive Population Based
  Augmentation
Improving 3D Object Detection through Progressive Population Based Augmentation
Shuyang Cheng
Zhaoqi Leng
E. D. Cubuk
Barret Zoph
Chunyan Bai
...
Vijay Vasudevan
Congcong Li
Quoc V. Le
Jonathon Shlens
Dragomir Anguelov
3DPC
20
74
0
02 Apr 2020
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
Tom Ching LingChen
Ava Khonsari
Amirreza Lashkari
M. Nazari
Jaspreet Singh Sambee
M. Nascimento
19
58
0
31 Mar 2020
Learning by Analogy: Reliable Supervision from Transformations for
  Unsupervised Optical Flow Estimation
Learning by Analogy: Reliable Supervision from Transformations for Unsupervised Optical Flow Estimation
L. Liu
Jiangning Zhang
Ruifei He
Yong Liu
Yabiao Wang
Ying Tai
Donghao Luo
Chengjie Wang
Jilin Li
Feiyue Huang
30
175
0
29 Mar 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
40
120
0
26 Mar 2020
Circumventing Outliers of AutoAugment with Knowledge Distillation
Circumventing Outliers of AutoAugment with Knowledge Distillation
Longhui Wei
Anxiang Xiao
Lingxi Xie
Xin Chen
Xiaopeng Zhang
Qi Tian
24
62
0
25 Mar 2020
On Translation Invariance in CNNs: Convolutional Layers can Exploit
  Absolute Spatial Location
On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location
O. Kayhan
Jan van Gemert
213
233
0
16 Mar 2020
SuperMix: Supervising the Mixing Data Augmentation
SuperMix: Supervising the Mixing Data Augmentation
Ali Dabouei
Sobhan Soleymani
Fariborz Taherkhani
Nasser M. Nasrabadi
19
98
0
10 Mar 2020
DADA: Differentiable Automatic Data Augmentation
DADA: Differentiable Automatic Data Augmentation
Yonggang Li
Guosheng Hu
Yongtao Wang
Timothy M. Hospedales
N. Robertson
Yongxin Yang
30
107
0
08 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
Time Series Data Augmentation for Deep Learning: A Survey
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Xue Wang
Huan Xu
AI4TS
32
635
0
27 Feb 2020
PointAugment: an Auto-Augmentation Framework for Point Cloud
  Classification
PointAugment: an Auto-Augmentation Framework for Point Cloud Classification
Ruihui Li
Xianzhi Li
Pheng-Ann Heng
Chi-Wing Fu
3DPC
22
145
0
25 Feb 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time
  Augmentation
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
27
84
0
21 Feb 2020
Learning Test-time Augmentation for Content-based Image Retrieval
Learning Test-time Augmentation for Content-based Image Retrieval
Osman Tursun
Simon Denman
Sridha Sridharan
Clinton Fookes
21
6
0
05 Feb 2020
Optimized Generic Feature Learning for Few-shot Classification across
  Domains
Optimized Generic Feature Learning for Few-shot Classification across Domains
Tonmoy Saikia
Thomas Brox
Cordelia Schmid
VLM
30
48
0
22 Jan 2020
Adversarial AutoAugment
Adversarial AutoAugment
Xinyu Zhang
Qiang-qiang Wang
Jian Zhang
Zhaobai Zhong
AAML
33
197
0
24 Dec 2019
Patch augmentation: Towards efficient decision boundaries for neural
  networks
Patch augmentation: Towards efficient decision boundaries for neural networks
Marcus D. Bloice
P. Roth
Andreas Holzinger
AAML
8
2
0
08 Nov 2019
Anatomically-Informed Data Augmentation for functional MRI with
  Applications to Deep Learning
Anatomically-Informed Data Augmentation for functional MRI with Applications to Deep Learning
K. Nguyen
Cherise R. Chin Fatt
A. Treacher
C. Mellema
M. Trivedi
A. Montillo
MedIm
21
28
0
17 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
102
3,423
0
30 Sep 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
22
1,423
0
02 Aug 2019
Learning Data Augmentation Strategies for Object Detection
Learning Data Augmentation Strategies for Object Detection
Barret Zoph
E. D. Cubuk
Golnaz Ghiasi
Nayeon Lee
Jonathon Shlens
Quoc V. Le
39
523
0
26 Jun 2019
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
274
5,330
0
05 Nov 2016
Previous
12