ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.05739
  4. Cited By
Graph Convolutional Gaussian Processes

Graph Convolutional Gaussian Processes

International Conference on Machine Learning (ICML), 2019
14 May 2019
Ian Walker
Ben Glocker
    GNN
ArXiv (abs)PDFHTML

Papers citing "Graph Convolutional Gaussian Processes"

24 / 24 papers shown
Title
Malice in Agentland: Down the Rabbit Hole of Backdoors in the AI Supply Chain
Malice in Agentland: Down the Rabbit Hole of Backdoors in the AI Supply Chain
Léo Boisvert
Abhay Puri
Chandra Kiran Reddy Evuru
Nicolas Chapados
Quentin Cappart
Alexandre Lacoste
Krishnamurthy Dvijotham
Alexandre Drouin
128
1
0
03 Oct 2025
AdS-GNN -- a Conformally Equivariant Graph Neural Network
AdS-GNN -- a Conformally Equivariant Graph Neural Network
Maksim Zhdanov
Nabil Iqbal
Erik Bekkers
Patrick Forré
306
2
0
19 May 2025
Regularized Multi-output Gaussian Convolution Process with Domain
  Adaptation
Regularized Multi-output Gaussian Convolution Process with Domain AdaptationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Wang Xinming
Wang Chao
Song Xuan
Kirby Levi
Wu Jianguo
138
7
0
04 Sep 2024
Multiple-Source Localization from a Single-Snapshot Observation Using
  Graph Bayesian Optimization
Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization
Zonghan Zhang
Zijian Zhang
Zhiqian Chen
64
2
0
25 Mar 2024
Flexible Infinite-Width Graph Convolutional Neural Networks
Flexible Infinite-Width Graph Convolutional Neural Networks
Ben Anson
Edward Milsom
Laurence Aitchison
SSLGNN
170
1
0
09 Feb 2024
Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in
  Position-Orientation Space
Fast, Expressive SE(n)(n)(n) Equivariant Networks through Weight-Sharing in Position-Orientation SpaceInternational Conference on Learning Representations (ICLR), 2023
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
338
38
0
04 Oct 2023
Bayesian Optimisation of Functions on Graphs
Bayesian Optimisation of Functions on GraphsNeural Information Processing Systems (NeurIPS), 2023
Xingchen Wan
Pierre Osselin
Henry Kenlay
Binxin Ru
Michael A. Osborne
Xiaowen Dong
204
9
0
08 Jun 2023
Gaussian process deconvolution
Gaussian process deconvolutionProceedings of the Royal Society A (Proc. R. Soc. A), 2023
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
154
7
0
08 May 2023
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
Jianfeng Wang
Xiaolin Hu
Thomas Lukasiewicz
AAMLBDL
163
0
0
31 Jan 2023
Graph Neural Networks in Computer Vision -- Architectures, Datasets and
  Common Approaches
Graph Neural Networks in Computer Vision -- Architectures, Datasets and Common ApproachesIEEE International Joint Conference on Neural Network (IJCNN), 2022
Maciej Krzywda
S. Lukasik
Amir H. Gandomi
GNN
179
13
0
20 Dec 2022
Transductive Kernels for Gaussian Processes on Graphs
Transductive Kernels for Gaussian Processes on Graphs
Yin-Cong Zhi
Felix L. Opolka
Yin Cheng Ng
Pietro Lio
Xiaowen Dong
98
1
0
28 Nov 2022
NP-Match: When Neural Processes meet Semi-Supervised Learning
NP-Match: When Neural Processes meet Semi-Supervised LearningInternational Conference on Machine Learning (ICML), 2022
Jianfeng Wang
Thomas Lukasiewicz
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
A. Neophytou
BDL
219
42
0
03 Jul 2022
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on ManifoldsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Yonghui Fan
Yalin Wang
171
2
0
30 Oct 2021
Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Adaptive Gaussian Processes on Graphs via Spectral Graph WaveletsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Felix L. Opolka
Yin-Cong Zhi
Pietro Lio
Xiaowen Dong
166
21
0
25 Oct 2021
PolyNet: Polynomial Neural Network for 3D Shape Recognition with
  PolyShape Representation
PolyNet: Polynomial Neural Network for 3D Shape Recognition with PolyShape Representation
Mohsen Yavartanoo
Shih-Hsuan Hung
Reyhaneh Neshatavar
Yue Zhang
Kyoung Mu Lee
125
20
0
15 Oct 2021
Training on Test Data with Bayesian Adaptation for Covariate Shift
Training on Test Data with Bayesian Adaptation for Covariate Shift
Aurick Zhou
Sergey Levine
OODTTA
233
13
0
27 Sep 2021
Evolving-Graph Gaussian Processes
Evolving-Graph Gaussian Processes
David Blanco Mulero
Markus Heinonen
Ville Kyrki
103
0
0
29 Jun 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDLAI4CE
730
21
0
23 Apr 2021
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural NetworksInternational Conference on Learning Representations (ICLR), 2020
Marc Finzi
Roberto Bondesan
Max Welling
BDLAI4TS
184
13
0
21 Oct 2020
Message Passing Neural Processes
Message Passing Neural Processes
Ben Day
Cătălina Cangea
Arian R. Jamasb
Pietro Lio
114
12
0
29 Sep 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDLUQCV
197
4
0
21 Jun 2020
Gaussian Processes on Graphs via Spectral Kernel Learning
Gaussian Processes on Graphs via Spectral Kernel LearningIEEE Transactions on Signal and Information Processing over Networks (TSIPN), 2020
Yin-Cong Zhi
Yin Cheng Ng
Xiaowen Dong
164
37
0
12 Jun 2020
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
  via Gaussian Processes
Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes
Jilin Hu
Jianbing Shen
B. Yang
Ling Shao
BDLGNN
181
20
0
26 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
109
15
0
11 Feb 2020
1