Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1905.05824
Cited By
v1
v2
v3 (latest)
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models
International Conference on Machine Learning (ICML), 2019
14 May 2019
Michael Oberst
David Sontag
CML
OffRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models"
50 / 118 papers shown
Title
Counterfactual Data Augmentation via Perspective Transition for Open-Domain Dialogues
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Jiao Ou
Jinchao Zhang
Yang Feng
Jie Zhou
197
14
0
30 Oct 2022
MoCoDA: Model-based Counterfactual Data Augmentation
Neural Information Processing Systems (NeurIPS), 2022
Silviu Pitis
Elliot Creager
Ajay Mandlekar
Animesh Garg
OffRL
170
49
0
20 Oct 2022
Data-Efficient Pipeline for Offline Reinforcement Learning with Limited Data
Neural Information Processing Systems (NeurIPS), 2022
Allen Nie
Yannis Flet-Berliac
Deon R. Jordan
William Steenbergen
Emma Brunskill
OffRL
241
13
0
16 Oct 2022
Deep Counterfactual Estimation with Categorical Background Variables
Neural Information Processing Systems (NeurIPS), 2022
E. Brouwer
CML
295
7
0
11 Oct 2022
Causal Modeling of Policy Interventions From Sequences of Treatments and Outcomes
Caglar Hizli
S. T. John
A. Juuti
Tuure Saarinen
Kirsi Pietiläinen
Pekka Marttinen
CML
365
1
0
09 Sep 2022
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
162
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGen
CML
MedIm
191
29
0
03 Jun 2022
Counterfactual Analysis in Dynamic Latent State Models
International Conference on Machine Learning (ICML), 2022
Martin Haugh
Raghav Singal
CML
222
6
0
27 May 2022
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes
International Conference on Learning Representations (ICLR), 2022
Miao Lu
Yifei Min
Zhaoran Wang
Zhuoran Yang
OffRL
308
26
0
26 May 2022
Model-Free and Model-Based Policy Evaluation when Causality is Uncertain
International Conference on Machine Learning (ICML), 2022
David Bruns-Smith
CML
ELM
OffRL
134
14
0
02 Apr 2022
Counterfactual Inference of Second Opinions
Conference on Uncertainty in Artificial Intelligence (UAI), 2022
N. C. Benz
Manuel Gomez Rodriguez
CML
141
15
0
16 Mar 2022
Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making
S. Parbhoo
Shalmali Joshi
Finale Doshi-Velez
ELM
CML
OffRL
194
5
0
20 Jan 2022
Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation
ACM Conference on Health, Inference, and Learning (CHIL), 2021
Ramtin Keramati
Omer Gottesman
Leo Anthony Celi
Finale Doshi-Velez
Emma Brunskill
OffRL
74
6
0
28 Nov 2021
Case-based off-policy policy evaluation using prototype learning
Anton Matsson
Fredrik D. Johansson
OffRL
136
1
0
22 Nov 2021
Counterfactual Temporal Point Processes
Neural Information Processing Systems (NeurIPS), 2021
Kimia Noorbakhsh
Manuel Gomez Rodriguez
178
27
0
15 Nov 2021
Learning Generalized Gumbel-max Causal Mechanisms
Neural Information Processing Systems (NeurIPS), 2021
Guy Lorberbom
Daniel D. Johnson
Chris J. Maddison
Daniel Tarlow
Tamir Hazan
CML
124
21
0
11 Nov 2021
Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in Partially Observed Markov Decision Processes
Operational Research (OR), 2021
Andrew Bennett
Nathan Kallus
OffRL
211
54
0
28 Oct 2021
Extracting Expert's Goals by What-if Interpretable Modeling
C. Chang
George Adam
Rich Caruana
Anna Goldenberg
OffRL
206
0
0
28 Oct 2021
On Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning
Guy Tennenholtz
Assaf Hallak
Gal Dalal
Shie Mannor
Gal Chechik
Uri Shalit
OOD
OffRL
292
16
0
13 Oct 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
320
125
0
04 Oct 2021
A Spectral Approach to Off-Policy Evaluation for POMDPs
Yash Nair
Nan Jiang
OffRL
102
19
0
22 Sep 2021
Learning-to-defer for sequential medical decision-making under uncertainty
Shalmali Joshi
S. Parbhoo
Finale Doshi-Velez
OffRL
180
11
0
13 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
490
21
0
04 Sep 2021
Online Bootstrap Inference For Policy Evaluation in Reinforcement Learning
Pratik Ramprasad
Yuantong Li
Zhuoran Yang
Zhaoran Wang
W. Sun
Guang Cheng
OffRL
252
38
0
08 Aug 2021
Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings
Machine Learning in Health Care (MLHC), 2021
Shengpu Tang
Jenna Wiens
OffRL
174
90
0
23 Jul 2021
Counterfactual Explanations in Sequential Decision Making Under Uncertainty
Stratis Tsirtsis
A. De
Manuel Gomez Rodriguez
315
51
0
06 Jul 2021
The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation
Alex J. Chan
Ioana Bica
Alihan Huyuk
Daniel Jarrett
M. Schaar
148
14
0
08 Jun 2021
Causal Graph Discovery from Self and Mutually Exciting Time Series
IEEE Journal on Selected Areas in Information Theory (JSAIT), 2021
S. Wei
Yao Xie
C. Josef
Rishikesan Kamaleswaran
CML
271
2
0
04 Jun 2021
Learning Under Adversarial and Interventional Shifts
Harvineet Singh
Shalmali Joshi
Finale Doshi-Velez
Himabindu Lakkaraju
OOD
166
4
0
29 Mar 2021
Challenges for Reinforcement Learning in Healthcare
Elsa Riachi
M. Mamdani
M. Fralick
Frank Rudzicz
OffRL
85
20
0
09 Mar 2021
Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
Neural Information Processing Systems (NeurIPS), 2021
Matej Zečević
Devendra Singh Dhami
Athresh Karanam
S. Natarajan
Kristian Kersting
CML
TPM
282
38
0
20 Feb 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
258
39
0
19 Feb 2021
Bootstrapping Fitted Q-Evaluation for Off-Policy Inference
International Conference on Machine Learning (ICML), 2021
Botao Hao
X. Ji
Yaqi Duan
Hao Lu
Csaba Szepesvári
Mengdi Wang
OffRL
197
43
0
06 Feb 2021
Directive Explanations for Actionable Explainability in Machine Learning Applications
Ronal Singh
Paul Dourish
Piers Howe
Tim Miller
L. Sonenberg
Eduardo Velloso
F. Vetere
120
41
0
03 Feb 2021
Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation
Chaochao Lu
Erdun Gao
Ke Wang
José Miguel Hernández-Lobato
Kun Zhang
Bernhard Schölkopf
CML
OOD
OffRL
201
66
0
16 Dec 2020
Counterfactual Credit Assignment in Model-Free Reinforcement Learning
International Conference on Machine Learning (ICML), 2020
Thomas Mesnard
T. Weber
Fabio Viola
S. Thakoor
Alaa Saade
...
A. Guez
Éric Moulines
Marcus Hutter
Lars Buesing
Rémi Munos
CML
OffRL
199
67
0
18 Nov 2020
Reinforcement Learning with Efficient Active Feature Acquisition
Haiyan Yin
Yingzhen Li
Sinno Jialin Pan
Cheng Zhang
Sebastian Tschiatschek
OffRL
128
18
0
02 Nov 2020
Off-Policy Evaluation of Bandit Algorithm from Dependent Samples under Batch Update Policy
Masahiro Kato
Yusuke Kaneko
OffRL
141
4
0
23 Oct 2020
A Practical Guide of Off-Policy Evaluation for Bandit Problems
Masahiro Kato
Kenshi Abe
Kaito Ariu
Shota Yasui
OffRL
136
3
0
23 Oct 2020
Trajectory Inspection: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies
Christina X. Ji
Michael Oberst
S. Kanjilal
David Sontag
OffRL
174
7
0
08 Oct 2020
The Adaptive Doubly Robust Estimator for Policy Evaluation in Adaptive Experiments and a Paradox Concerning Logging Policy
Masahiro Kato
Shota Yasui
K. McAlinn
OffRL
213
0
0
08 Oct 2020
Probabilistic Machine Learning for Healthcare
Annual Review of Biomedical Data Science (ARBDS), 2020
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
221
62
0
23 Sep 2020
Individual Treatment Prescription Effect Estimation in a Low Compliance Setting
Thibaud Rahier
Amélie Héliou
Matthieu Martin
Christophe Renaudin
Eustache Diemert
116
1
0
07 Aug 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
226
105
0
06 Jul 2020
Reinforcement Learning and its Connections with Neuroscience and Psychology
Neural Networks (NN), 2020
Ajay Subramanian
Sharad Chitlangia
V. Baths
OffRL
504
35
0
25 Jun 2020
Counterfactually Guided Off-policy Transfer in Clinical Settings
Taylor W. Killian
Marzyeh Ghassemi
Shalmali Joshi
CML
OffRL
OOD
203
12
0
20 Jun 2020
Confidence Interval for Off-Policy Evaluation from Dependent Samples via Bandit Algorithm: Approach from Standardized Martingales
Masahiro Kato
OffRL
113
3
0
12 Jun 2020
Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation
International Conference on Machine Learning (ICML), 2020
Masahiro Kato
Takeshi Teshima
320
49
0
12 Jun 2020
Bandits with Partially Observable Confounded Data
Conference on Uncertainty in Artificial Intelligence (UAI), 2020
Guy Tennenholtz
Uri Shalit
Shie Mannor
Yonathan Efroni
OffRL
195
25
0
11 Jun 2020
Deep Structural Causal Models for Tractable Counterfactual Inference
Neural Information Processing Systems (NeurIPS), 2020
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
338
285
0
11 Jun 2020
Previous
1
2
3
Next