ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.06642
  4. Cited By
The Incomplete Rosetta Stone Problem: Identifiability Results for
  Multi-View Nonlinear ICA

The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA

16 May 2019
Luigi Gresele
Paul Kishan Rubenstein
Arash Mehrjou
Francesco Locatello
Bernhard Schölkopf
ArXivPDFHTML

Papers citing "The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA"

28 / 28 papers shown
Title
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Causal View of Time Series Imputation: Some Identification Results on Missing Mechanism
Ruichu Cai
Kaitao Zheng
Junxian Huang
Zijian Li
Zhengming Chen
Boyan Xu
Zhifeng Hao
AI4TS
CML
31
0
0
12 May 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
57
0
0
27 Feb 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
61
2
0
16 Feb 2025
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
All or None: Identifiable Linear Properties of Next-token Predictors in Language Modeling
Emanuele Marconato
Sébastien Lachapelle
Sebastian Weichwald
Luigi Gresele
69
3
0
30 Oct 2024
Cross-Entropy Is All You Need To Invert the Data Generating Process
Cross-Entropy Is All You Need To Invert the Data Generating Process
Patrik Reizinger
Alice Bizeul
Attila Juhos
Julia E. Vogt
Randall Balestriero
Wieland Brendel
David Klindt
SSL
OOD
BDL
DRL
102
3
0
29 Oct 2024
InfoNCE: Identifying the Gap Between Theory and Practice
InfoNCE: Identifying the Gap Between Theory and Practice
E. Rusak
Patrik Reizinger
Attila Juhos
Oliver Bringmann
Roland S. Zimmermann
Wieland Brendel
33
5
0
28 Jun 2024
Sparsity regularization via tree-structured environments for
  disentangled representations
Sparsity regularization via tree-structured environments for disentangled representations
Elliot Layne
Jason S. Hartford
Sébastien Lachapelle
Mathieu Blanchette
Dhanya Sridhar
OOD
CML
33
0
0
30 May 2024
Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning
Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning
Yuhang Liu
Zhen Zhang
Dong Gong
Biwei Huang
Biwei Huang
A. Hengel
Kun Zhang
Anton van den Hengel
Javen Qinfeng Shi
46
7
0
09 Feb 2024
Towards a Unified Framework of Contrastive Learning for Disentangled
  Representations
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
31
4
0
08 Nov 2023
Causal Representation Learning Made Identifiable by Grouping of
  Observational Variables
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
23
6
0
02 Jul 2023
Nonparametric Identifiability of Causal Representations from Unknown
  Interventions
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Identifiability of latent-variable and structural-equation models: from
  linear to nonlinear
Identifiability of latent-variable and structural-equation models: from linear to nonlinear
Aapo Hyvarinen
Ilyes Khemakhem
R. Monti
CML
30
41
0
06 Feb 2023
Provable Subspace Identification Under Post-Nonlinear Mixtures
Provable Subspace Identification Under Post-Nonlinear Mixtures
Qi Lyu
Xiao Fu
CoGe
23
0
0
14 Oct 2022
Multi-View Independent Component Analysis with Shared and Individual
  Sources
Multi-View Independent Component Analysis with Shared and Individual Sources
T. Pandeva
Patrick Forré
CML
15
5
0
05 Oct 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
35
58
0
02 Jun 2022
On Pitfalls of Identifiability in Unsupervised Learning. A Note on:
  "Desiderata for Representation Learning: A Causal Perspective"
On Pitfalls of Identifiability in Unsupervised Learning. A Note on: "Desiderata for Representation Learning: A Causal Perspective"
Shubhangi Ghosh
Luigi Gresele
Julius von Kügelgen
M. Besserve
Bernhard Schölkopf
CML
17
0
0
14 Feb 2022
Contrastively Disentangled Sequential Variational Autoencoder
Contrastively Disentangled Sequential Variational Autoencoder
M. Kiener
Weiran Wang
Michael Gerndt
CoGe
DRL
24
40
0
22 Oct 2021
Identifiability-Guaranteed Simplex-Structured Post-Nonlinear Mixture
  Learning via Autoencoder
Identifiability-Guaranteed Simplex-Structured Post-Nonlinear Mixture Learning via Autoencoder
Qi Lyu
Xiao Fu
CML
25
12
0
16 Jun 2021
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
33
80
0
27 Oct 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
24
20
0
28 Jul 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
16
22
0
26 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
Leveraging directed causal discovery to detect latent common causes
Leveraging directed causal discovery to detect latent common causes
Ciarán M. Gilligan-Lee
Chris Hart
Jonathan G. Richens
Saurabh Johri
CML
21
16
0
22 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
28
136
0
22 Oct 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
11
122
0
03 May 2019
1