ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07346
  4. Cited By
EmBench: Quantifying Performance Variations of Deep Neural Networks
  across Modern Commodity Devices

EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

17 May 2019
Mario Almeida
Stefanos Laskaridis
Ilias Leontiadis
Stylianos I. Venieris
Nicholas D. Lane
ArXivPDFHTML

Papers citing "EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices"

12 / 12 papers shown
Title
Benchmarking Edge AI Platforms for High-Performance ML Inference
Benchmarking Edge AI Platforms for High-Performance ML Inference
Rakshith Jayanth
Neelesh Gupta
Viktor Prasanna
BDL
28
0
0
23 Sep 2024
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device
  Super-Resolution
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution
Stylianos I. Venieris
Mario Almeida
Royson Lee
Nicholas D. Lane
SupR
10
4
0
15 Dec 2022
The Future of Consumer Edge-AI Computing
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
39
8
0
19 Oct 2022
Benchmarking of DL Libraries and Models on Mobile Devices
Benchmarking of DL Libraries and Models on Mobile Devices
Qiyang Zhang
Xiang Li
Xiangying Che
Xiao Ma
Ao Zhou
Mengwei Xu
Shangguang Wang
Yun Ma
Xuanzhe Liu
25
48
0
14 Feb 2022
Smart at what cost? Characterising Mobile Deep Neural Networks in the
  wild
Smart at what cost? Characterising Mobile Deep Neural Networks in the wild
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
HAI
109
44
0
28 Sep 2021
OODIn: An Optimised On-Device Inference Framework for Heterogeneous
  Mobile Devices
OODIn: An Optimised On-Device Inference Framework for Heterogeneous Mobile Devices
Stylianos I. Venieris
Ioannis Panopoulos
I. Venieris
40
14
0
08 Jun 2021
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
Mario Almeida
Stefanos Laskaridis
Stylianos I. Venieris
Ilias Leontiadis
Nicholas D. Lane
13
36
0
20 Apr 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
It's always personal: Using Early Exits for Efficient On-Device CNN
  Personalisation
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
63
29
0
02 Feb 2021
Neural Enhancement in Content Delivery Systems: The State-of-the-Art and
  Future Directions
Neural Enhancement in Content Delivery Systems: The State-of-the-Art and Future Directions
Royson Lee
Stylianos I. Venieris
Nicholas D. Lane
22
7
0
12 Oct 2020
SPINN: Synergistic Progressive Inference of Neural Networks over Device
  and Cloud
SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud
Stefanos Laskaridis
Stylianos I. Venieris
Mario Almeida
Ilias Leontiadis
Nicholas D. Lane
28
265
0
14 Aug 2020
HAPI: Hardware-Aware Progressive Inference
HAPI: Hardware-Aware Progressive Inference
Stefanos Laskaridis
Stylianos I. Venieris
Hyeji Kim
Nicholas D. Lane
11
45
0
10 Aug 2020
1