ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.08628
  4. Cited By
Constraining the Parameters of High-Dimensional Models with Active
  Learning

Constraining the Parameters of High-Dimensional Models with Active Learning

19 May 2019
S. Caron
Tom Heskes
Sydney Otten
B. Stienen
    AI4CE
ArXivPDFHTML

Papers citing "Constraining the Parameters of High-Dimensional Models with Active Learning"

5 / 5 papers shown
Title
Exploration of Parameter Spaces Assisted by Machine Learning
Exploration of Parameter Spaces Assisted by Machine Learning
A. Hammad
Myeonghun Park
Raymundo Ramos
Pankaj Saha
16
15
0
20 Jul 2022
Active Learning for Computationally Efficient Distribution of Binary
  Evolution Simulations
Active Learning for Computationally Efficient Distribution of Binary Evolution Simulations
K. A. Rocha
J. Andrews
C. Berry
Zoheyr Doctor
Aggelos K. Katsaggelos
...
T. Fragos
K. Kovlakas
D. Misra
Zepei Xing
E. Zapartas
8
6
0
30 Mar 2022
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
Bayesian Neural Networks for Fast SUSY Predictions
Bayesian Neural Networks for Fast SUSY Predictions
B. Kronheim
M. Kuchera
Harrison B. Prosper
A. Karbo
6
17
0
09 Jul 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1