Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.09997
Cited By
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
24 May 2019
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates"
45 / 45 papers shown
Title
Increasing Both Batch Size and Learning Rate Accelerates Stochastic Gradient Descent
Hikaru Umeda
Hideaki Iiduka
72
2
0
17 Feb 2025
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
37
1
0
06 Aug 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
66
1
0
03 Apr 2024
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Philip Kenneweg
Leonardo Galli
Tristan Kenneweg
Barbara Hammer
ODL
51
2
0
27 Mar 2024
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
45
1
0
05 Mar 2024
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
31
5
0
19 Aug 2023
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
54
14
0
25 May 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
MoMo: Momentum Models for Adaptive Learning Rates
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
37
10
0
12 May 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
29
13
0
27 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
37
57
0
08 Feb 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Nicolas Le Roux
60
5
0
06 Feb 2023
Improved Policy Optimization for Online Imitation Learning
J. Lavington
Sharan Vaswani
Mark Schmidt
OffRL
28
6
0
29 Jul 2022
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Yu Cao
Eric Vanden-Eijnden
21
3
0
20 Jun 2022
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Aaron Defazio
Baoyu Zhou
Lin Xiao
ODL
27
5
0
14 Jun 2022
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Junchi Yang
Xiang Li
Niao He
ODL
45
22
0
01 Jun 2022
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
30
43
0
04 May 2022
Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing
Dinh C. Nguyen
Seyyedali Hosseinalipour
David J. Love
P. Pathirana
Christopher G. Brinton
36
47
0
18 Mar 2022
Leveraging Randomized Smoothing for Optimal Control of Nonsmooth Dynamical Systems
Quentin Le Lidec
Fabian Schramm
Louis Montaut
Cordelia Schmid
Ivan Laptev
Justin Carpentier
38
24
0
08 Mar 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
33
14
0
28 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
26
4
0
29 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
39
30
0
28 Oct 2021
Iterative Teaching by Label Synthesis
Weiyang Liu
Zhen Liu
Hanchen Wang
Liam Paull
Bernhard Schölkopf
Adrian Weller
50
16
0
27 Oct 2021
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
Sharan Vaswani
Benjamin Dubois-Taine
Reza Babanezhad
53
11
0
21 Oct 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
58
2
0
07 Jul 2021
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
32
17
0
22 Jun 2021
Understanding approximate and unrolled dictionary learning for pattern recovery
Benoit Malézieux
Thomas Moreau
M. Kowalski
MU
22
10
0
11 Jun 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization
Abolfazl Hashemi
Anish Acharya
Rudrajit Das
H. Vikalo
Sujay Sanghavi
Inderjit Dhillon
20
7
0
20 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
46
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
38
0
0
02 Oct 2020
Stochastic Adaptive Line Search for Differentially Private Optimization
Chen Chen
Jaewoo Lee
22
14
0
18 Aug 2020
A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images
I. Laradji
Pau Rodríguez López
Oscar Manas
Keegan Lensink
M. Law
Lironne Kurzman
William Parker
David Vazquez
Derek Nowrouzezahrai
23
84
0
04 Jul 2020
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Adversarial Example Games
A. Bose
Gauthier Gidel
Hugo Berrard
Andre Cianflone
Pascal Vincent
Simon Lacoste-Julien
William L. Hamilton
AAML
GAN
38
51
0
01 Jul 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
27
74
0
18 Jun 2020
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
15
11
0
25 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
29
181
0
24 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
21
25
0
22 Jan 2020
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
19
29
0
18 Jan 2020
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
49
63
0
14 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
139
1,205
0
16 Aug 2016
1