ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.09997
  4. Cited By
Painless Stochastic Gradient: Interpolation, Line-Search, and
  Convergence Rates

Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates

24 May 2019
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
    ODL
ArXivPDFHTML

Papers citing "Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates"

45 / 45 papers shown
Title
Increasing Both Batch Size and Learning Rate Accelerates Stochastic Gradient Descent
Increasing Both Batch Size and Learning Rate Accelerates Stochastic Gradient Descent
Hikaru Umeda
Hideaki Iiduka
72
2
0
17 Feb 2025
Convergence Conditions for Stochastic Line Search Based Optimization of
  Over-parametrized Models
Convergence Conditions for Stochastic Line Search Based Optimization of Over-parametrized Models
Matteo Lapucci
Davide Pucci
37
1
0
06 Aug 2024
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
55
4
0
06 Jun 2024
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
Aaron Mishkin
Mert Pilanci
Mark Schmidt
66
1
0
03 Apr 2024
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Faster Convergence for Transformer Fine-tuning with Line Search Methods
Philip Kenneweg
Leonardo Galli
Tristan Kenneweg
Barbara Hammer
ODL
51
2
0
27 Mar 2024
Level Set Teleportation: An Optimization Perspective
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
45
1
0
05 Mar 2024
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
Mohammad Salehi
Subhadip Mukherjee
Lindon Roberts
Matthias Joachim Ehrhardt
31
5
0
19 Aug 2023
First Order Methods with Markovian Noise: from Acceleration to
  Variational Inequalities
First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities
Aleksandr Beznosikov
S. Samsonov
Marina Sheshukova
Alexander Gasnikov
A. Naumov
Eric Moulines
54
14
0
25 May 2023
Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning
Achraf Bahamou
D. Goldfarb
ODL
36
0
0
23 May 2023
MoMo: Momentum Models for Adaptive Learning Rates
MoMo: Momentum Models for Adaptive Learning Rates
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
37
10
0
12 May 2023
Single-Call Stochastic Extragradient Methods for Structured Non-monotone
  Variational Inequalities: Improved Analysis under Weaker Conditions
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
29
13
0
27 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
37
57
0
08 Feb 2023
Target-based Surrogates for Stochastic Optimization
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Nicolas Le Roux
60
5
0
06 Feb 2023
Improved Policy Optimization for Online Imitation Learning
Improved Policy Optimization for Online Imitation Learning
J. Lavington
Sharan Vaswani
Mark Schmidt
OffRL
28
6
0
29 Jul 2022
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Learning Optimal Flows for Non-Equilibrium Importance Sampling
Yu Cao
Eric Vanden-Eijnden
21
3
0
20 Jun 2022
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Aaron Defazio
Baoyu Zhou
Lin Xiao
ODL
27
5
0
14 Jun 2022
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax
  Optimization
Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization
Junchi Yang
Xiang Li
Niao He
ODL
45
22
0
01 Jun 2022
Making SGD Parameter-Free
Making SGD Parameter-Free
Y. Carmon
Oliver Hinder
30
43
0
04 May 2022
Latency Optimization for Blockchain-Empowered Federated Learning in
  Multi-Server Edge Computing
Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing
Dinh C. Nguyen
Seyyedali Hosseinalipour
David J. Love
P. Pathirana
Christopher G. Brinton
36
47
0
18 Mar 2022
Leveraging Randomized Smoothing for Optimal Control of Nonsmooth
  Dynamical Systems
Leveraging Randomized Smoothing for Optimal Control of Nonsmooth Dynamical Systems
Quentin Le Lidec
Fabian Schramm
Louis Montaut
Cordelia Schmid
Ivan Laptev
Justin Carpentier
38
24
0
08 Mar 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
33
14
0
28 Feb 2022
A Stochastic Bundle Method for Interpolating Networks
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
26
4
0
29 Jan 2022
Over-Parametrized Matrix Factorization in the Presence of Spurious
  Stationary Points
Over-Parametrized Matrix Factorization in the Presence of Spurious Stationary Points
Armin Eftekhari
24
1
0
25 Dec 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants
  via the Mirror Stochastic Polyak Stepsize
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
39
30
0
28 Oct 2021
Iterative Teaching by Label Synthesis
Iterative Teaching by Label Synthesis
Weiyang Liu
Zhen Liu
Hanchen Wang
Liam Paull
Bernhard Schölkopf
Adrian Weller
50
16
0
27 Oct 2021
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic
  Gradient Descent
Towards Noise-adaptive, Problem-adaptive (Accelerated) Stochastic Gradient Descent
Sharan Vaswani
Benjamin Dubois-Taine
Reza Babanezhad
53
11
0
21 Oct 2021
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
58
2
0
07 Jul 2021
Stochastic Polyak Stepsize with a Moving Target
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
32
17
0
22 Jun 2021
Understanding approximate and unrolled dictionary learning for pattern
  recovery
Understanding approximate and unrolled dictionary learning for pattern recovery
Benoit Malézieux
Thomas Moreau
M. Kowalski
MU
22
10
0
11 Jun 2021
SVRG Meets AdaGrad: Painless Variance Reduction
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
On the Benefits of Multiple Gossip Steps in Communication-Constrained
  Decentralized Optimization
On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization
Abolfazl Hashemi
Anish Acharya
Rudrajit Das
H. Vikalo
Sujay Sanghavi
Inderjit Dhillon
20
7
0
20 Nov 2020
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
  Filtering
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
46
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss
  for stochastic deep learning problems
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
38
0
0
02 Oct 2020
Stochastic Adaptive Line Search for Differentially Private Optimization
Stochastic Adaptive Line Search for Differentially Private Optimization
Chen Chen
Jaewoo Lee
22
14
0
18 Aug 2020
A Weakly Supervised Consistency-based Learning Method for COVID-19
  Segmentation in CT Images
A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images
I. Laradji
Pau Rodríguez López
Oscar Manas
Keegan Lensink
M. Law
Lironne Kurzman
William Parker
David Vazquez
Derek Nowrouzezahrai
23
84
0
04 Jul 2020
Descending through a Crowded Valley - Benchmarking Deep Learning
  Optimizers
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
47
162
0
03 Jul 2020
Adversarial Example Games
Adversarial Example Games
A. Bose
Gauthier Gidel
Hugo Berrard
Andre Cianflone
Pascal Vincent
Simon Lacoste-Julien
William L. Hamilton
AAML
GAN
38
51
0
01 Jul 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
27
74
0
18 Jun 2020
Statistical Adaptive Stochastic Gradient Methods
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
15
11
0
25 Feb 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
29
181
0
24 Feb 2020
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
57
30
0
13 Feb 2020
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved
  Complexities
Zeroth-Order Algorithms for Nonconvex Minimax Problems with Improved Complexities
Zhongruo Wang
Krishnakumar Balasubramanian
Shiqian Ma
Meisam Razaviyayn
21
25
0
22 Jan 2020
Adaptive Stochastic Optimization
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
19
29
0
18 Jan 2020
L4: Practical loss-based stepsize adaptation for deep learning
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolínek
Georg Martius
ODL
49
63
0
14 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
139
1,205
0
16 Aug 2016
1