Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10261
Cited By
Approximation Ratios of Graph Neural Networks for Combinatorial Problems
24 May 2019
Ryoma Sato
M. Yamada
H. Kashima
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximation Ratios of Graph Neural Networks for Combinatorial Problems"
27 / 27 papers shown
Title
NN-Steiner: A Mixed Neural-algorithmic Approach for the Rectilinear Steiner Minimum Tree Problem
Andrew B. Kahng
Robert Nerem
Yusu Wang
Chien-Yi Yang
17
5
0
17 Dec 2023
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Hanxuan Yang
Qingchao Kong
Wenji Mao
BDL
13
0
0
09 Dec 2023
Going beyond persistent homology using persistent homology
Johanna Immonen
Amauri H. Souza
Vikas K. Garg
27
9
0
10 Nov 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Solving the Kidney-Exchange Problem via Graph Neural Networks with No Supervision
P. F. Pimenta
Pedro H. C. Avelar
Luís C. Lamb
23
1
0
19 Apr 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion
Haotian Ju
Dongyue Li
Aneesh Sharma
Hongyang R. Zhang
23
40
0
09 Feb 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
28
5
0
26 Jan 2023
GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph Generation
Han Huang
Leilei Sun
Bowen Du
Yanjie Fu
Weifeng Lv
DiffM
24
42
0
04 Dec 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
89
54
0
29 Sep 2022
On Representing Linear Programs by Graph Neural Networks
Ziang Chen
Jialin Liu
Xinshang Wang
Jian Lu
W. Yin
AI4CE
54
31
0
25 Sep 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
17
138
0
11 Nov 2021
Learning on Random Balls is Sufficient for Estimating (Some) Graph Parameters
Takanori Maehara
Hoang NT
32
2
0
05 Nov 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
38
18
0
21 Jul 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
24
64
0
12 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
346
0
18 Feb 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
16
158
0
07 Sep 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
20
111
0
28 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
43
423
0
16 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
42
319
0
10 Feb 2020
Random Features Strengthen Graph Neural Networks
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
10
230
0
08 Feb 2020
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,397
0
20 Dec 2018
1