Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.10862
Cited By
v1
v2
v3
v4 (latest)
Automatic Discovery of Privacy-Utility Pareto Fronts
26 May 2019
Brendan Avent
Javier I. González
Tom Diethe
Andrei Paleyes
Borja Balle
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Automatic Discovery of Privacy-Utility Pareto Fronts"
15 / 15 papers shown
Title
DPolicy: Managing Privacy Risks Across Multiple Releases with Differential Privacy
Nicolas Küchler
Alexander Viand
Hidde Lycklama
Anwar Hithnawi
49
0
0
10 May 2025
Federated Computing -- Survey on Building Blocks, Extensions and Systems
René Schwermer
R. Mayer
Hans-Arno Jacobsen
FedML
71
1
0
03 Apr 2024
Regulation Games for Trustworthy Machine Learning
Mohammad Yaghini
Patty Liu
Franziska Boenisch
Nicolas Papernot
FaML
45
2
0
05 Feb 2024
Automated discovery of trade-off between utility, privacy and fairness in machine learning models
Bogdan Ficiu
Neil D. Lawrence
Andrei Paleyes
76
1
0
27 Nov 2023
Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective
Christian Cabrera
Andrei Paleyes
Pierre Thodoroff
Neil D. Lawrence
AI4TS
AI4CE
OOD
62
7
0
09 Feb 2023
SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing
Jie Fu
Zhili Chen
Xinpeng Ling
77
1
0
14 Nov 2022
Deep Learning-based Anonymization of Chest Radiographs: A Utility-preserving Measure for Patient Privacy
Kai Packhauser
Sebastian Gündel
Florian Thamm
Felix Denzinger
Andreas Maier
53
3
0
23 Sep 2022
A penalisation method for batch multi-objective Bayesian optimisation with application in heat exchanger design
Andrei Paleyes
Henry B. Moss
Victor Picheny
Piotr Zulawski
Felix Newman
77
6
0
27 Jun 2022
On the Importance of Architecture and Feature Selection in Differentially Private Machine Learning
Wenxuan Bao
L. A. Bauer
Vincent Bindschaedler
OOD
69
4
0
13 May 2022
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
164
33
0
09 Nov 2021
Partial sensitivity analysis in differential privacy
Tamara T. Mueller
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
F. Jungmann
Daniel Rueckert
Georgios Kaissis
78
1
0
22 Sep 2021
Efficient Hyperparameter Optimization for Differentially Private Deep Learning
Aman Priyanshu
Rakshit Naidu
Fatemehsadat Mireshghallah
Mohammad Malekzadeh
82
5
0
09 Aug 2021
Multi-Objective Learning to Predict Pareto Fronts Using Hypervolume Maximization
T. Deist
Monika Grewal
F. Dankers
Tanja Alderliesten
Peter A. N. Bosman
72
19
0
08 Feb 2021
Challenges in Deploying Machine Learning: a Survey of Case Studies
Andrei Paleyes
Raoul-Gabriel Urma
Neil D. Lawrence
71
408
0
18 Nov 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
213
179
0
28 Jul 2020
1