Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11675
Cited By
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
28 May 2019
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems"
18 / 18 papers shown
Title
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
64
1
0
14 Dec 2024
How to Protect Copyright Data in Optimization of Large Language Models?
T. Chu
Zhao-quan Song
Chiwun Yang
34
29
0
23 Aug 2023
A Nearly-Optimal Bound for Fast Regression with
ℓ
∞
\ell_\infty
ℓ
∞
Guarantee
Zhao-quan Song
Mingquan Ye
Junze Yin
Licheng Zhang
14
10
0
01 Feb 2023
Bypass Exponential Time Preprocessing: Fast Neural Network Training via Weight-Data Correlation Preprocessing
Josh Alman
Jiehao Liang
Zhao-quan Song
Ruizhe Zhang
Danyang Zhuo
71
31
0
25 Nov 2022
Component-Wise Natural Gradient Descent -- An Efficient Neural Network Optimization
Tran van Sang
Mhd Irvan
R. Yamaguchi
Toshiyuki Nakata
11
1
0
11 Oct 2022
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao-quan Song
Licheng Zhang
Ruizhe Zhang
23
63
0
14 Dec 2021
SCORE: Approximating Curvature Information under Self-Concordant Regularization
Adeyemi Damilare Adeoye
Alberto Bemporad
10
4
0
14 Dec 2021
Provable Regret Bounds for Deep Online Learning and Control
Xinyi Chen
Edgar Minasyan
Jason D. Lee
Elad Hazan
23
6
0
15 Oct 2021
Does Preprocessing Help Training Over-parameterized Neural Networks?
Zhao-quan Song
Shuo Yang
Ruizhe Zhang
30
49
0
09 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
47
105
0
04 Oct 2021
Credit Assignment in Neural Networks through Deep Feedback Control
Alexander Meulemans
Matilde Tristany Farinha
Javier García Ordónez
Pau Vilimelis Aceituno
João Sacramento
Benjamin Grewe
20
34
0
15 Jun 2021
TENGraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion
Saeed Soori
Bugra Can
Baourun Mu
Mert Gurbuzbalaban
M. Dehnavi
16
10
0
07 Jun 2021
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
13
11
0
12 Feb 2021
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
Shengjie Luo
Keyulu Xu
Di He
Tie-Yan Liu
Liwei Wang
GNN
16
158
0
07 Sep 2020
Scalable Derivative-Free Optimization for Nonlinear Least-Squares Problems
C. Cartis
T. Ferguson
Lindon Roberts
19
6
0
26 Jul 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
34
32
0
18 Jun 2020
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide Random Network: A Geometrical Perspective
S. Amari
11
12
0
20 Jan 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
1