Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1905.11722
Cited By
A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation
Neural Information Processing Systems (NeurIPS), 2019
28 May 2019
M. Kusumoto
Takuya Inoue
G. Watanabe
Takuya Akiba
Masanori Koyama
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation"
15 / 15 papers shown
Title
End-to-End Training Induces Information Bottleneck through Layer-Role Differentiation: A Comparative Analysis with Layer-wise Training
Keitaro Sakamoto
Issei Sato
294
9
0
14 Feb 2024
GMLake: Efficient and Transparent GPU Memory Defragmentation for Large-scale DNN Training with Virtual Memory Stitching
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024
Cong Guo
Rui Zhang
Jiale Xu
Jingwen Leng
Zihan Liu
...
Minyi Guo
Hao Wu
Shouren Zhao
Junping Zhao
Ke Zhang
VLM
167
24
0
16 Jan 2024
FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
International Conference on Learning Representations (ICLR), 2023
Daniel Y. Fu
Hermann Kumbong
Eric N. D. Nguyen
Christopher Ré
VLM
224
38
0
10 Nov 2023
FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound
Chaoyu Chen
Xin Yang
Yuhao Huang
Wenlong Shi
Yan Cao
...
Kejuan Yue
Yuanji Zhang
Yi Xiong
Dong Ni
Weijun Huang
3DH
114
0
0
30 Oct 2023
Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch
International Conference on Machine Learning (ICML), 2023
Xunyi Zhao
Théotime Le Hellard
Lionel Eyraud
Julia Gusak
Olivier Beaumont
249
10
0
03 Jul 2023
Moccasin: Efficient Tensor Rematerialization for Neural Networks
International Conference on Machine Learning (ICML), 2023
Burak Bartan
Haoming Li
Harris Teague
Chris Lott
B. Dilkina
124
3
0
27 Apr 2023
XEngine: Optimal Tensor Rematerialization for Neural Networks in Heterogeneous Environments
ACM Transactions on Architecture and Code Optimization (TACO) (TACO), 2022
Manuela Schuler
Richard Membarth
P. Slusallek
225
4
0
19 Dec 2022
On-device Training: A First Overview on Existing Systems
Shuai Zhu
Thiemo Voigt
Jeonggil Ko
Fatemeh Rahimian
383
30
0
01 Dec 2022
FedDCT: Federated Learning of Large Convolutional Neural Networks on Resource Constrained Devices using Divide and Collaborative Training
IEEE Transactions on Network and Service Management (IEEE TNSM), 2022
Quan Nguyen
Hieu H. Pham
Kok-Seng Wong
Phi Le Nguyen
Truong Thao Nguyen
Minh N. Do
FedML
202
9
0
20 Nov 2022
Survey on Large Scale Neural Network Training
Julia Gusak
Daria Cherniuk
Alena Shilova
A. Katrutsa
Daniel Bershatsky
...
Lionel Eyraud-Dubois
Oleg Shlyazhko
Denis Dimitrov
Ivan Oseledets
Olivier Beaumont
193
13
0
21 Feb 2022
Front Contribution instead of Back Propagation
Swaroop Mishra
Anjana Arunkumar
143
0
0
10 Jun 2021
Classifying Sequences of Extreme Length with Constant Memory Applied to Malware Detection
AAAI Conference on Artificial Intelligence (AAAI), 2020
Edward Raff
William Fleshman
Richard Zak
Hyrum S. Anderson
Bobby Filar
Mark McLean
AAML
143
65
0
17 Dec 2020
Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA
International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2020
Mohamed Wahib
Haoyu Zhang
Truong Thao Nguyen
Aleksandr Drozd
Jens Domke
Lingqi Zhang
Ryousei Takano
Satoshi Matsuoka
OODD
176
24
0
26 Aug 2020
Dynamic Tensor Rematerialization
Marisa Kirisame
Steven Lyubomirsky
Altan Haan
Jennifer Brennan
Mike He
Jared Roesch
Tianqi Chen
Zachary Tatlock
309
108
0
17 Jun 2020
Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited memory
Julien Herrmann
Olivier Beaumont
Lionel Eyraud-Dubois
J. Herrmann
Alexis Joly
Alena Shilova
BDL
174
44
0
27 Nov 2019
1