Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.12417
Cited By
Deep Factors for Forecasting
28 May 2019
Bernie Wang
Alex Smola
Danielle C. Maddix
Jan Gasthaus
Dean Phillips Foster
Tim Januschowski
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Factors for Forecasting"
39 / 39 papers shown
Title
A Set-Sequence Model for Time Series
Elliot L. Epstein
Apaar Sadhwani
Kay Giesecke
AI4TS
BDL
17
0
0
16 May 2025
A comparative study of deep learning and ensemble learning to extend the horizon of traffic forecasting
Xiao Zheng
Saeed Asadi Bagloee
Majid Sarvi
AI4TS
43
0
0
30 Apr 2025
Generative Probabilistic Time Series Forecasting and Applications in Grid Operations
Xinyi Wang
Lang Tong
Qing Zhao
AI4TS
36
3
0
21 Feb 2024
Multivariate Probabilistic Time Series Forecasting with Correlated Errors
Vincent Zhihao Zheng
Lijun Sun
BDL
AI4TS
34
2
0
01 Feb 2024
Dish-TS: A General Paradigm for Alleviating Distribution Shift in Time Series Forecasting
Wei Fan
Pengyang Wang
Dongkun Wang
Dongjie Wang
Yuanchun Zhou
Yanjie Fu
AI4TS
38
75
0
22 Feb 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
P. Djuric
26
12
0
29 Jan 2023
Neural Spline Search for Quantile Probabilistic Modeling
Ruoxi Sun
Chun-Liang Li
Sercan Ö. Arik
Michael W. Dusenberry
Chen-Yu Lee
Tomas Pfister
AI4TS
42
5
0
12 Jan 2023
Graph state-space models
Daniele Zambon
Andrea Cini
L. Livi
Cesare Alippi
28
6
0
04 Jan 2023
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
21
173
0
07 Dec 2022
Koopman Neural Forecaster for Time Series with Temporal Distribution Shifts
Rui Wang
Yihe Dong
Sercan Ö. Arik
Rose Yu
AI4TS
41
24
0
07 Oct 2022
DeepVARwT: Deep Learning for a VAR Model with Trend
Xixi Li
Jingsong Yuan
16
0
0
21 Sep 2022
Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets
Mustafa Abdallah
B. Joung
Wo Jae Lee
C. Mousoulis
J. Sutherland
S. Bagchi
28
20
0
13 Jun 2022
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
20
18
0
24 Feb 2022
Robust Nonparametric Distribution Forecast with Backtest-based Bootstrap and Adaptive Residual Selection
Longshaokan Wang
Lingda Wang
M. Georgieva
Paulo Machado
Abinaya Ulagappa
Safwan Ahmed
Yanxia Lu
Arjun Bakshi
F. Ghassemi
TTA
21
1
0
16 Feb 2022
SSDNet: State Space Decomposition Neural Network for Time Series Forecasting
Yang Lin
I. Koprinska
Mashud Rana
BDL
AI4TS
26
31
0
19 Dec 2021
GOPHER: Categorical probabilistic forecasting with graph structure via local continuous-time dynamics
Ke Alexander Wang
Danielle C. Maddix
Yuyang Wang
AI4CE
28
1
0
18 Dec 2021
Learning Quantile Functions without Quantile Crossing for Distribution-free Time Series Forecasting
Youngsuk Park
Danielle C. Maddix
Franccois-Xavier Aubet
Kelvin K. Kan
Jan Gasthaus
Yuyang Wang
UQCV
AI4TS
94
38
0
12 Nov 2021
Neural forecasting at scale
Philippe Chatigny
Shengrui Wang
Jean-Marc Patenaude and
Boris N. Oreshkin
AI4TS
35
1
0
20 Sep 2021
Topological Attention for Time Series Forecasting
Sebastian Zeng
Florian Graf
Christoph Hofer
Roland Kwitt
AI4TS
13
24
0
19 Jul 2021
ScoreGrad: Multivariate Probabilistic Time Series Forecasting with Continuous Energy-based Generative Models
Tijin Yan
Hongwei Zhang
Tong Zhou
Yufeng Zhan
Yuanqing Xia
DiffM
AI4TS
36
38
0
18 Jun 2021
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
Soumyasundar Pal
Liheng Ma
Yingxue Zhang
Mark J. Coates
BDL
AI4TS
33
22
0
10 Jun 2021
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
38
17
0
02 Mar 2021
Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting
Nam H. Nguyen
Brian Quanz
BDL
AI4TS
140
66
0
25 Jan 2021
Global Models for Time Series Forecasting: A Simulation Study
Hansika Hewamalage
Christoph Bergmeir
Kasun Bandara
AI4TS
39
57
0
23 Dec 2020
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
36
363
0
04 Dec 2020
Explainable boosted linear regression for time series forecasting
Igor Ilic
Berk Görgülü
Mucahit Cevik
M. Baydogan
AI4TS
8
62
0
18 Sep 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
54
1,188
0
28 Apr 2020
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Konstantinos Benidis
Syama Sundar Rangapuram
Valentin Flunkert
Bernie Wang
Danielle C. Maddix
...
David Salinas
Lorenzo Stella
François-Xavier Aubet
Laurent Callot
Tim Januschowski
AI4TS
25
176
0
21 Apr 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin Walters
Rose Yu
AI4CE
52
170
0
08 Feb 2020
Meta-learning framework with applications to zero-shot time-series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
UQCV
AI4TS
AI4CE
39
106
0
07 Feb 2020
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
Bryan Lim
Sercan Ö. Arik
Nicolas Loeff
Tomas Pfister
AI4TS
66
1,410
0
19 Dec 2019
Bayesian Temporal Factorization for Multidimensional Time Series Prediction
Xinyu Chen
Lijun Sun
AI4TS
10
205
0
14 Oct 2019
Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models
Vincent Le Guen
Nicolas Thome
AI4TS
32
134
0
19 Sep 2019
GluonTS: Probabilistic Time Series Models in Python
A. Alexandrov
Konstantinos Benidis
Michael Bohlke-Schneider
Valentin Flunkert
Jan Gasthaus
...
David Salinas
J. Schulz
Lorenzo Stella
Ali Caner Türkmen
Bernie Wang
BDL
AI4TS
20
114
0
12 Jun 2019
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
AI4TS
11
1,014
0
24 May 2019
Think Globally, Act Locally: A Deep Neural Network Approach to High-Dimensional Time Series Forecasting
Rajat Sen
Hsiang-Fu Yu
Inderjit Dhillon
AI4TS
34
349
0
09 May 2019
Approximate Bayesian Inference in Linear State Space Models for Intermittent Demand Forecasting at Scale
Matthias Seeger
Syama Sundar Rangapuram
Bernie Wang
David Salinas
Jan Gasthaus
Tim Januschowski
Valentin Flunkert
BDL
40
18
0
22 Sep 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1