ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12614
  4. Cited By
Unsupervised Model Selection for Variational Disentangled Representation
  Learning

Unsupervised Model Selection for Variational Disentangled Representation Learning

29 May 2019
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
    OOD
    DRL
ArXivPDFHTML

Papers citing "Unsupervised Model Selection for Variational Disentangled Representation Learning"

23 / 23 papers shown
Title
Representational Similarity via Interpretable Visual Concepts
Representational Similarity via Interpretable Visual Concepts
Neehar Kondapaneni
Oisin Mac Aodha
Pietro Perona
DRL
240
0
0
19 Mar 2025
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
30
0
0
25 Oct 2024
Predictive variational autoencoder for learning robust representations
  of time-series data
Predictive variational autoencoder for learning robust representations of time-series data
Julia Huiming Wang
Dexter Tsin
Tatiana Engel
CML
OOD
AI4TS
34
2
0
12 Dec 2023
Identifying Interpretable Visual Features in Artificial and Biological
  Neural Systems
Identifying Interpretable Visual Features in Artificial and Biological Neural Systems
David A. Klindt
Sophia Sanborn
Francisco Acosta
Frédéric Poitevin
Nina Miolane
MILM
FAtt
44
7
0
17 Oct 2023
Measuring the Effect of Causal Disentanglement on the Adversarial
  Robustness of Neural Network Models
Measuring the Effect of Causal Disentanglement on the Adversarial Robustness of Neural Network Models
Preben Ness
D. Marijan
Sunanda Bose
CML
31
0
0
21 Aug 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
38
3
0
11 May 2023
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
36
35
0
07 Nov 2022
Graph Anomaly Detection with Unsupervised GNNs
Graph Anomaly Detection with Unsupervised GNNs
Lingxiao Zhao
Saurabh Sawlani
Arvind Srinivasan
Leman Akoglu
39
17
0
18 Oct 2022
How do Variational Autoencoders Learn? Insights from Representational
  Similarity
How do Variational Autoencoders Learn? Insights from Representational Similarity
Lisa Bonheme
M. Grzes
CoGe
SSL
DRL
37
10
0
17 May 2022
Lost in Latent Space: Disentangled Models and the Challenge of
  Combinatorial Generalisation
Lost in Latent Space: Disentangled Models and the Challenge of Combinatorial Generalisation
M. Montero
J. Bowers
Rui Ponte Costa
Casimir J. H. Ludwig
Gaurav Malhotra
DRL
CoGe
32
11
0
05 Apr 2022
Efficient-VDVAE: Less is more
Efficient-VDVAE: Less is more
Louay Hazami
Rayhane Mama
Ragavan Thurairatnam
BDL
29
28
0
25 Mar 2022
Latte: Cross-framework Python Package for Evaluation of Latent-Based
  Generative Models
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
23
1
0
20 Dec 2021
Graph-wise Common Latent Factor Extraction for Unsupervised Graph
  Representation Learning
Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning
Thilini Cooray
Ngai-man Cheung
27
6
0
16 Dec 2021
3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch
  Feature Swapping for Bodies and Faces
3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces
Simone Foti
Bongjin Koo
Danail Stoyanov
Matthew J. Clarkson
CoGe
19
15
0
24 Nov 2021
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
50
8
0
10 Nov 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
58
38
0
07 Apr 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
14
66
0
27 Oct 2020
Robust Disentanglement of a Few Factors at a Time
Robust Disentanglement of a Few Factors at a Time
Benjamin Estermann
Markus Marks
M. Yanik
CoGe
OOD
DRL
13
3
0
26 Oct 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
29
20
0
28 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
29
25
0
14 Jul 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
1