Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13021
Cited By
Robustness to Adversarial Perturbations in Learning from Incomplete Data
24 May 2019
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness to Adversarial Perturbations in Learning from Incomplete Data"
32 / 32 papers shown
Title
RideKE: Leveraging Low-Resource, User-Generated Twitter Content for Sentiment and Emotion Detection in Kenyan Code-Switched Dataset
Naome A. Etori
Maria L. Gini
76
2
0
10 Feb 2025
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
23
0
0
26 Jan 2024
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
31
2
0
26 Jan 2024
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
49
14
0
24 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
21
208
0
09 Feb 2023
Semi-Supervised and Unsupervised Deep Visual Learning: A Survey
Yanbei Chen
Massimiliano Mancini
Xiatian Zhu
Zeynep Akata
36
113
0
24 Aug 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
24
0
0
17 Aug 2022
Global-Local Regularization Via Distributional Robustness
Hoang Phan
Trung Le
Trung-Nghia Phung
Tu Bui
Nhat Ho
Dinh Q. Phung
OOD
14
12
0
01 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability
Idan Attias
Steve Hanneke
Yishay Mansour
30
15
0
11 Feb 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Assessing Fairness in the Presence of Missing Data
Yiliang Zhang
Q. Long
FaML
26
35
0
07 Dec 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
269
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
29
17
0
09 Nov 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
27
293
0
18 Oct 2021
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
25
65
0
20 Aug 2021
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
25
8
0
08 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
27
268
0
02 Mar 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
19
10
0
15 Feb 2021
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
9
107
0
05 Oct 2020
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
8
12
0
17 Sep 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
530
0
01 Jul 2020
Understanding Self-Training for Gradual Domain Adaptation
Ananya Kumar
Tengyu Ma
Percy Liang
CLL
TTA
28
226
0
26 Feb 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
22
396
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
28
69
0
25 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
27
64
0
11 Feb 2020
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
21
6
0
20 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
42
2,358
0
11 Nov 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
13
239
0
14 Jun 2019
On the Convergence of the EM Algorithm: A Data-Adaptive Analysis
Chong Wu
Can Yang
Hongyu Zhao
Ji Zhu
33
19
0
02 Nov 2016
1