Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13195
Cited By
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
30 May 2019
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections"
9 / 9 papers shown
Title
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
R. Y. Rohekar
Shami Nisimov
Yaniv Gurwicz
Gal Novik
CML
25
10
0
01 Jun 2023
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
42
1,877
0
12 Nov 2020
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
17
10
0
24 Oct 2020
Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Awais Mansoor
Y. Yoo
Eli Gibson
...
Ramandeep Singh
S. Digumarthy
M. Kalra
Sasa Grbic
D. Comaniciu
UQCV
EDL
23
55
0
08 Jul 2020
Distance-Based Learning from Errors for Confidence Calibration
Chen Xing
Sercan Ö. Arik
Zizhao Zhang
Tomas Pfister
FedML
21
39
0
03 Dec 2019
The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation
Hermann Blum
Paul-Edouard Sarlin
Juan I. Nieto
Roland Siegwart
César Cadena
UQCV
9
156
0
05 Apr 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1