Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13277
Cited By
Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence
30 May 2019
Aditya Golatkar
Alessandro Achille
Stefano Soatto
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence"
16 / 16 papers shown
Title
Better Schedules for Low Precision Training of Deep Neural Networks
Cameron R. Wolfe
Anastasios Kyrillidis
45
1
0
04 Mar 2024
Critical Learning Periods Emerge Even in Deep Linear Networks
Michael Kleinman
Alessandro Achille
Stefano Soatto
34
3
0
23 Aug 2023
FUN with Fisher: Improving Generalization of Adapter-Based Cross-lingual Transfer with Scheduled Unfreezing
Chen Cecilia Liu
Jonas Pfeiffer
Ivan Vulić
Iryna Gurevych
CLL
24
9
0
13 Jan 2023
A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning
Guozheng Ma
Zhen Wang
Zhecheng Yuan
Xueqian Wang
Bo Yuan
Dacheng Tao
OffRL
35
26
0
10 Oct 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
31
121
0
03 May 2022
Cyclical Focal Loss
L. Smith
30
14
0
16 Feb 2022
PRUNIX: Non-Ideality Aware Convolutional Neural Network Pruning for Memristive Accelerators
Ali Alshaarawy
A. Amirsoleimani
R. Genov
11
1
0
03 Feb 2022
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
19
75
0
09 Feb 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
29
2
0
04 Jan 2021
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman
Alessandro Achille
Daksh Idnani
J. Kao
21
13
0
06 Oct 2020
Effective Regularization Through Loss-Function Metalearning
Santiago Gonzalez
Risto Miikkulainen
24
5
0
02 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
29
79
0
17 Sep 2020
The Early Phase of Neural Network Training
Jonathan Frankle
D. Schwab
Ari S. Morcos
16
170
0
24 Feb 2020
The Break-Even Point on Optimization Trajectories of Deep Neural Networks
Stanislaw Jastrzebski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
42
154
0
21 Feb 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
281
2,888
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1