ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13599
  4. Cited By
Component-wise approximate Bayesian computation via Gibbs-like steps
v1v2v3v4v5 (latest)

Component-wise approximate Bayesian computation via Gibbs-like steps

31 May 2019
Grégoire Clarté
Christian P. Robert
Robin J. Ryder
Julien Stoehr
ArXiv (abs)PDFHTML

Papers citing "Component-wise approximate Bayesian computation via Gibbs-like steps"

6 / 6 papers shown
Title
A Deep Learning Method for Comparing Bayesian Hierarchical Models
A Deep Learning Method for Comparing Bayesian Hierarchical Models
Lasse Elsemüller
Martin Schnuerch
Paul-Christian Bürkner
Stefan T. Radev
BDL
105
10
0
27 Jan 2023
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
77
26
0
20 Dec 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
265
198
0
12 Jan 2021
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
95
17
0
14 Apr 2020
Marginally-calibrated deep distributional regression
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
86
14
0
26 Aug 2019
Likelihood-free approximate Gibbs sampling
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
81
25
0
11 Jun 2019
1