Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13655
Cited By
Implicit Regularization in Deep Matrix Factorization
31 May 2019
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Regularization in Deep Matrix Factorization"
45 / 45 papers shown
Title
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
57
0
0
11 Apr 2025
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
97
0
0
04 Feb 2025
Optimization Insights into Deep Diagonal Linear Networks
Hippolyte Labarrière
C. Molinari
Lorenzo Rosasco
S. Villa
Cristian Vega
66
0
0
21 Dec 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
27
3
0
22 Sep 2024
Multiple Rotation Averaging with Constrained Reweighting Deep Matrix Factorization
Shiqi Li
Jihua Zhu
Yifan Xie
Naiwen Hu
Mingchen Zhu
Zhongyu Li
Di Wang
41
0
0
15 Sep 2024
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
24
1
0
17 Jun 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
24
12
0
06 Jun 2024
Pretraining with Random Noise for Fast and Robust Learning without Weight Transport
Jeonghwan Cheon
Sang Wan Lee
Se-Bum Paik
OOD
43
1
0
27 May 2024
Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion
Zhiwei Bai
Jiajie Zhao
Yaoyu Zhang
AI4CE
23
0
0
22 May 2024
How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
Siyi Lin
Chongming Gao
Jiawei Chen
Sheng Zhou
Binbin Hu
Yan Feng
Chun-Yen Chen
Can Wang
16
5
0
18 Apr 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis D. Haupt
ODL
40
3
0
12 Mar 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
86
18
0
04 Mar 2024
The Expected Loss of Preconditioned Langevin Dynamics Reveals the Hessian Rank
Amitay Bar
Rotem Mulayoff
T. Michaeli
Ronen Talmon
35
0
0
21 Feb 2024
Implicit Bias and Fast Convergence Rates for Self-attention
Bhavya Vasudeva
Puneesh Deora
Christos Thrampoulidis
21
13
0
08 Feb 2024
Enhancing Cross-Category Learning in Recommendation Systems with Multi-Layer Embedding Training
Selim F. Yilmaz
Benjamin Ghaemmaghami
A. Singh
Benjamin Cho
Leo Orshansky
Lei Deng
Michael Orshansky
AI4TS
11
0
0
27 Sep 2023
Critical Learning Periods Emerge Even in Deep Linear Networks
Michael Kleinman
Alessandro Achille
Stefano Soatto
26
3
0
23 Aug 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
17
19
0
24 Jul 2023
The Implicit Bias of Batch Normalization in Linear Models and Two-layer Linear Convolutional Neural Networks
Yuan Cao
Difan Zou
Yuan-Fang Li
Quanquan Gu
MLT
19
5
0
20 Jun 2023
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
11
0
0
24 May 2023
ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models
Suzanna Parkinson
Greg Ongie
Rebecca Willett
48
6
0
24 May 2023
Convergence of Alternating Gradient Descent for Matrix Factorization
R. Ward
T. Kolda
19
6
0
11 May 2023
Robust Implicit Regularization via Weight Normalization
H. Chou
Holger Rauhut
Rachel A. Ward
15
7
0
09 May 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
17
35
0
02 Apr 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
10
3
0
06 Mar 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
10
47
0
30 Jan 2023
Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing
Jikai Jin
Zhiyuan Li
Kaifeng Lyu
S. Du
Jason D. Lee
MLT
22
34
0
27 Jan 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
20
10
0
01 Dec 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
8
8
0
19 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
19
72
0
26 Aug 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
17
5
0
15 Jul 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
19
27
0
08 Jul 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
11
130
0
15 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
8
8
0
30 May 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
8
25
0
29 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
65
8
0
24 May 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
16
34
0
12 May 2022
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
8
119
0
11 Apr 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
20
8
0
01 Mar 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
6
6
0
27 Feb 2022
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
13
12
0
13 Dec 2021
Learning Rich Nearest Neighbor Representations from Self-supervised Ensembles
Bram Wallace
Devansh Arpit
Huan Wang
Caiming Xiong
SSL
OOD
10
0
0
19 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
62
10
0
13 Oct 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
29
257
0
18 Nov 2020
Machine learning for neural decoding
Joshua I. Glaser
Ari S. Benjamin
Raeed H. Chowdhury
M. Perich
L. Miller
Konrad Paul Kording
19
234
0
02 Aug 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,696
0
15 Sep 2016
1