Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.13686
Cited By
Explainability Techniques for Graph Convolutional Networks
31 May 2019
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainability Techniques for Graph Convolutional Networks"
50 / 55 papers shown
Title
Interpretability of Graph Neural Networks to Assess Effects of Global Change Drivers on Ecological Networks
Emré Anakok
Pierre Barbillon
Colin Fontaine
Elisa Thébault
47
0
0
19 Mar 2025
GIN-Graph: A Generative Interpretation Network for Model-Level Explanation of Graph Neural Networks
Xiao Yue
Guangzhi Qu
Lige Gan
GAN
FAtt
AI4CE
63
0
0
08 Mar 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
73
2
0
14 Feb 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
51
7
0
31 Dec 2024
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
43
0
0
10 Jun 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
47
3
0
21 May 2024
Incorporating Retrieval-based Causal Learning with Information Bottlenecks for Interpretable Graph Neural Networks
Jiahua Rao
Jiancong Xie
Hanjing Lin
Shuangjia Zheng
Zhen Wang
Yuedong Yang
21
0
0
07 Feb 2024
Towards Fine-Grained Explainability for Heterogeneous Graph Neural Network
Tong Li
Jiale Deng
Yanyan Shen
Luyu Qiu
Hu Yongxiang
Caleb Chen Cao
23
5
0
23 Dec 2023
D4Explainer: In-Distribution GNN Explanations via Discrete Denoising Diffusion
Jialin Chen
Shirley Wu
Abhijit Gupta
Rex Ying
DiffM
39
4
0
30 Oct 2023
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
23
22
0
22 May 2023
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting
G. Liang
Prayag Tiwari
Sławomir Nowaczyk
Stefan Byttner
F. Alonso-Fernandez
DiffM
39
12
0
16 May 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
18
1
0
25 Apr 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
25
31
0
04 Jan 2023
Towards Prototype-Based Self-Explainable Graph Neural Network
Enyan Dai
Suhang Wang
27
12
0
05 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
33
7
0
28 Sep 2022
Evaluating Explainability for Graph Neural Networks
Chirag Agarwal
Owen Queen
Himabindu Lakkaraju
Marinka Zitnik
45
99
0
19 Aug 2022
A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics
Yiqiao Li
Jianlong Zhou
Sunny Verma
Fang Chen
XAI
34
39
0
26 Jul 2022
A Survey on Hyperlink Prediction
Cang Chen
Yang-Yu Liu
3DV
AI4CE
9
40
0
06 Jul 2022
Towards Faithful and Consistent Explanations for Graph Neural Networks
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
FAtt
52
18
0
27 May 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
30
25
0
20 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Explainability in Graph Neural Networks: An Experimental Survey
Peibo Li
Yixing Yang
M. Pagnucco
Yang Song
23
31
0
17 Mar 2022
An explainability framework for cortical surface-based deep learning
Fernanda L. Ribeiro
S. Bollmann
R. Cunnington
A. M. Puckett
FAtt
AAML
MedIm
16
2
0
15 Mar 2022
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
42
18
0
05 Feb 2022
Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
Siqi Miao
Miaoyuan Liu
Pan Li
14
197
0
31 Jan 2022
Deconfounding to Explanation Evaluation in Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
FAtt
CML
17
14
0
21 Jan 2022
A Cognitive Explainer for Fetal ultrasound images classifier Based on Medical Concepts
Ying-Shuai Wanga
Yunxia Liua
Licong Dongc
Xuzhou Wua
Huabin Zhangb
Qiongyu Yed
Desheng Sunc
Xiaobo Zhoue
Kehong Yuan
24
0
0
19 Jan 2022
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
43
5
0
15 Sep 2021
GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks
Lucie Charlotte Magister
Dmitry Kazhdan
Vikash Singh
Pietro Lió
27
48
0
25 Jul 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
38
18
0
21 Jul 2021
A Survey on Graph-Based Deep Learning for Computational Histopathology
David Ahmedt-Aristizabal
M. Armin
Simon Denman
Clinton Fookes
L. Petersson
GNN
AI4CE
19
107
0
01 Jul 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
24
51
0
16 Jun 2021
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
Ryan Henderson
Djork-Arné Clevert
F. Montanari
30
26
0
11 May 2021
MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks
Danilo Numeroso
D. Bacciu
21
38
0
16 Apr 2021
Sampling methods for efficient training of graph convolutional networks: A survey
Xin Liu
Mingyu Yan
Lei Deng
Guoqi Li
Xiaochun Ye
Dongrui Fan
GNN
26
100
0
10 Mar 2021
Graph Computing for Financial Crime and Fraud Detection: Trends, Challenges and Outlook
Eren Kurshan
Hongda Shen
GNN
24
32
0
02 Mar 2021
Financial Crime & Fraud Detection Using Graph Computing: Application Considerations & Outlook
Eren Kurshan
Honda Shen
Haojie Yu
GNN
FaML
35
26
0
02 Mar 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Explanation from Specification
Harish Naik
Gyorgy Turán
XAI
27
0
0
13 Dec 2020
NCGNN: Node-Level Capsule Graph Neural Network for Semisupervised Classification
Rui Yang
Wenrui Dai
Chenglin Li
Junni Zou
H. Xiong
28
20
0
07 Dec 2020
Quantifying Explainers of Graph Neural Networks in Computational Pathology
Guillaume Jaume
Pushpak Pati
Behzad Bozorgtabar
Antonio Foncubierta-Rodríguez
Florinda Feroce
A. Anniciello
T. Rau
Jean-Philippe Thiran
M. Gabrani
O. Goksel
FAtt
26
76
0
25 Nov 2020
xFraud: Explainable Fraud Transaction Detection
Susie Xi Rao
Shuai Zhang
Zhichao Han
Zitao Zhang
Wei Min
Zhiyao Chen
Yinan Shan
Yang Zhao
Ce Zhang
28
49
0
24 Nov 2020
Graph Neural Networks in Recommender Systems: A Survey
Shiwen Wu
Fei Sun
Wentao Zhang
Xu Xie
Bin Cui
GNN
56
1,174
0
04 Nov 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
M. Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
31
214
0
01 Oct 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
625
0
01 Jul 2020
Explanation-based Weakly-supervised Learning of Visual Relations with Graph Networks
Federico Baldassarre
Kevin Smith
Josephine Sullivan
Hossein Azizpour
19
24
0
16 Jun 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
28
389
0
03 Jun 2020
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance Propagation
Hyeoncheol Cho
E. Lee
I. Choi
GNN
FAtt
17
4
0
12 May 2020
Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu Aggarwal
Chang-Tien Lu
29
45
0
27 Feb 2020
1
2
Next