ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13736
  4. Cited By
Unlabeled Data Improves Adversarial Robustness

Unlabeled Data Improves Adversarial Robustness

31 May 2019
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
ArXivPDFHTML

Papers citing "Unlabeled Data Improves Adversarial Robustness"

50 / 193 papers shown
Title
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated
  Channel Maps
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
37
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based
  Adversarial Attacks
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Transductive Robust Learning Guarantees
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
16
13
0
20 Oct 2021
Improving Robustness using Generated Data
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
30
293
0
18 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Provably Efficient Black-Box Action Poisoning Attacks Against
  Reinforcement Learning
Provably Efficient Black-Box Action Poisoning Attacks Against Reinforcement Learning
Guanlin Liu
Lifeng Lai
AAML
32
34
0
09 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust
  Overfitting
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
Information-Theoretic Characterization of the Generalization Error for
  Iterative Semi-Supervised Learning
Information-Theoretic Characterization of the Generalization Error for Iterative Semi-Supervised Learning
Haiyun He
Hanshu Yan
Vincent Y. F. Tan
34
11
0
03 Oct 2021
Modeling Adversarial Noise for Adversarial Training
Modeling Adversarial Noise for Adversarial Training
Dawei Zhou
Nannan Wang
Bo Han
Tongliang Liu
AAML
32
15
0
21 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random
  Forest
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
35
4
0
16 Sep 2021
Towards Understanding the Generative Capability of Adversarially Robust
  Classifiers
Towards Understanding the Generative Capability of Adversarially Robust Classifiers
Yao Zhu
Jiacheng Ma
Jiacheng Sun
Zewei Chen
Rongxin Jiang
Zhenguo Li
AAML
18
21
0
20 Aug 2021
Distributionally Robust Learning
Distributionally Robust Learning
Ruidi Chen
I. Paschalidis
OOD
25
65
0
20 Aug 2021
MvSR-NAT: Multi-view Subset Regularization for Non-Autoregressive
  Machine Translation
MvSR-NAT: Multi-view Subset Regularization for Non-Autoregressive Machine Translation
Pan Xie
Zexian Li
Xiaohui Hu
31
11
0
19 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided
  Knowledge Distillation and Bi-directional Metric Learning
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
19
15
0
13 Aug 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
30
64
0
24 Jul 2021
On the Certified Robustness for Ensemble Models and Beyond
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
26
48
0
22 Jul 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic
  Processors and Synthetic Gradients
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
16
4
0
06 Jul 2021
The Values Encoded in Machine Learning Research
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
25
274
0
29 Jun 2021
Adversarial Training Helps Transfer Learning via Better Representations
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
36
52
0
18 Jun 2021
Consistency Regularization for Cross-Lingual Fine-Tuning
Consistency Regularization for Cross-Lingual Fine-Tuning
Bo Zheng
Li Dong
Shaohan Huang
Wenhui Wang
Zewen Chi
Saksham Singhal
Wanxiang Che
Ting Liu
Xia Song
Furu Wei
19
58
0
15 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
23
23
0
12 Jun 2021
Generate, Annotate, and Learn: NLP with Synthetic Text
Generate, Annotate, and Learn: NLP with Synthetic Text
Xuanli He
Islam Nassar
J. Kiros
Gholamreza Haffari
Mohammad Norouzi
33
51
0
11 Jun 2021
Adversarial purification with Score-based generative models
Adversarial purification with Score-based generative models
Jongmin Yoon
Sung Ju Hwang
Juho Lee
DiffM
14
151
0
11 Jun 2021
Analysis and Applications of Class-wise Robustness in Adversarial
  Training
Analysis and Applications of Class-wise Robustness in Adversarial Training
Qi Tian
Kun Kuang
Ke Jiang
Fei Wu
Yisen Wang
AAML
18
46
0
29 May 2021
Exploring Misclassifications of Robust Neural Networks to Enhance
  Adversarial Attacks
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial
  Attacks
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Vision Transformers are Robust Learners
Vision Transformers are Robust Learners
Sayak Paul
Pin-Yu Chen
ViT
22
304
0
17 May 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
25
44
0
19 Apr 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure
  DNN Accelerators
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
22
18
0
16 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
29
65
0
09 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
18
76
0
06 Apr 2021
Combating Adversaries with Anti-Adversaries
Combating Adversaries with Anti-Adversaries
Motasem Alfarra
Juan C. Pérez
Ali K. Thabet
Adel Bibi
Philip H. S. Torr
Bernard Ghanem
AAML
26
26
0
26 Mar 2021
StyleLess layer: Improving robustness for real-world driving
StyleLess layer: Improving robustness for real-world driving
Julien Rebut
Andrei Bursuc
P. Pérez
22
5
0
25 Mar 2021
Improving Global Adversarial Robustness Generalization With
  Adversarially Trained GAN
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
28
8
0
08 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
33
268
0
02 Mar 2021
Evaluating the Robustness of Geometry-Aware Instance-Reweighted
  Adversarial Training
Evaluating the Robustness of Geometry-Aware Instance-Reweighted Adversarial Training
Dorjan Hitaj
Giulio Pagnotta
I. Masi
L. Mancini
OOD
AAML
18
22
0
02 Mar 2021
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
Maura Pintor
Fabio Roli
Wieland Brendel
Battista Biggio
AAML
43
70
0
25 Feb 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic
  Meta-Learning
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
15
46
0
20 Feb 2021
Guided Interpolation for Adversarial Training
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
27
10
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
15
29
0
13 Feb 2021
When and How Mixup Improves Calibration
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
28
67
0
11 Feb 2021
Proof Artifact Co-training for Theorem Proving with Language Models
Proof Artifact Co-training for Theorem Proving with Language Models
Jesse Michael Han
Jason M. Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
AIMat
23
120
0
11 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan S. Kankanhalli
Masashi Sugiyama
AAML
19
27
0
06 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial
  Training
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
17
11
0
22 Dec 2020
Self-Progressing Robust Training
Self-Progressing Robust Training
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAML
VLM
21
9
0
22 Dec 2020
Composite Adversarial Attacks
Composite Adversarial Attacks
Xiaofeng Mao
YueFeng Chen
Shuhui Wang
Hang Su
Yuan He
Hui Xue
AAML
30
47
0
10 Dec 2020
Data-Dependent Randomized Smoothing
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip H. S. Torr
Bernard Ghanem
UQCV
23
34
0
08 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial
  Defenses
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
8
92
0
30 Nov 2020
Previous
1234
Next