Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00232
Cited By
Kernel Instrumental Variable Regression
1 June 2019
Rahul Singh
M. Sahani
Arthur Gretton
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Kernel Instrumental Variable Regression"
50 / 110 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
A Unifying Framework for Causal Imitation Learning with Hidden Confounders
Daqian Shao
Thomas Kleine Buening
Marta Z. Kwiatkowska
CML
71
1
0
11 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Testability of Instrumental Variables in Additive Nonlinear, Non-Constant Effects Models
Xichen Guo
Zheng Li
Erdun Gao
Yan Zeng
Zhi Geng
Feng Xie
65
0
0
19 Nov 2024
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
35
2
0
30 Oct 2024
Learning Representations of Instruments for Partial Identification of Treatment Effects
J. Schweisthal
Dennis Frauen
Maresa Schröder
Konstantin Hess
Niki Kilbertus
Stefan Feuerriegel
CML
34
1
0
11 Oct 2024
Transformers Handle Endogeneity in In-Context Linear Regression
Haodong Liang
Krishnakumar Balasubramanian
Lifeng Lai
41
1
0
02 Oct 2024
Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables
Yang Xie
Ziqi Xu
Debo Cheng
Jiuyong Li
Lin Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
26
0
0
13 Aug 2024
Generalized Encouragement-Based Instrumental Variables for Counterfactual Regression
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Xiangwei Chen
Zexu Sun
Fei Wu
Kun Zhang
CML
27
0
0
10 Aug 2024
Causal Inference with Complex Treatments: A Survey
Yingrong Wang
Haoxuan Li
Minqin Zhu
Anpeng Wu
Ruoxuan Xiong
Fei Wu
Kun Kuang
CML
48
1
0
19 Jul 2024
Spectral Representation for Causal Estimation with Hidden Confounders
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
CML
32
1
0
15 Jul 2024
Nonparametric Jackknife Instrumental Variable Estimation and Confounding Robust Surrogate Indices
Aurélien F. Bibaut
Nathan Kallus
Apoorva Lal
CML
38
0
0
20 Jun 2024
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng Li
Jundong Li
CML
43
3
0
20 Jun 2024
Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
M. Oprescu
Nathan Kallus
CML
28
0
0
10 Jun 2024
Self-Distilled Disentangled Learning for Counterfactual Prediction
Xinshu Li
Mingming Gong
Lina Yao
CML
35
2
0
09 Jun 2024
Probabilities of Causation for Continuous and Vector Variables
Yuta Kawakami
Manabu Kuroki
Jin Tian
27
4
0
30 May 2024
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
46
1
0
30 May 2024
Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data
Xuxing Chen
Abhishek Roy
Yifan Hu
Krishnakumar Balasubramanian
43
1
0
29 May 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
43
4
0
23 May 2024
Geometry-Aware Instrumental Variable Regression
Heiner Kremer
Bernhard Schölkopf
46
0
0
19 May 2024
A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
Andrzej Ruszczyñski
Shangzhe Yang
29
0
0
17 May 2024
Learning Decision Policies with Instrumental Variables through Double Machine Learning
Daqian Shao
Ashkan Soleymani
Francesco Quinzan
Marta Z. Kwiatkowska
39
1
0
14 May 2024
Bounding Causal Effects with Leaky Instruments
David S. Watson
Jordan Penn
L. Gunderson
Gecia Bravo Hermsdorff
Afsaneh Mastouri
Ricardo M. A. Silva
CML
29
1
0
05 Apr 2024
Functional Bilevel Optimization for Machine Learning
Ieva Petrulionyte
Julien Mairal
Michael Arbel
51
2
0
29 Mar 2024
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
43
3
0
16 Mar 2024
Proxy Methods for Domain Adaptation
Katherine Tsai
Stephen R. Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander DÁmour
Oluwasanmi Koyejo
Arthur Gretton
OOD
35
2
0
12 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
21
0
0
07 Mar 2024
Regularized DeepIV with Model Selection
Zihao Li
Hui Lan
Vasilis Syrgkanis
Mengdi Wang
Masatoshi Uehara
38
2
0
07 Mar 2024
Nonparametric Instrumental Variable Regression through Stochastic Approximate Gradients
Yuri S. Fonseca
Caio Peixoto
Yuri F. Saporito
42
2
0
08 Feb 2024
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
31
5
0
12 Dec 2023
Counterfactual Prediction Under Selective Confounding
Sohaib Kiani
Jared Barton
Jon Sushinsky
Lynda Heimbach
Bo Luo
CML
19
1
0
21 Oct 2023
Federated Conditional Stochastic Optimization
Xidong Wu
Jianhui Sun
Zhengmian Hu
Junyi Li
Aidong Zhang
Heng-Chiao Huang
FedML
44
4
0
04 Oct 2023
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
Ziqi Xu
Debo Cheng
Jiuyong Li
Jixue Liu
Lin Liu
Kui Yu
CML
39
9
0
03 Oct 2023
Conditional Instrumental Variable Regression with Representation Learning for Causal Inference
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
19
6
0
03 Oct 2023
A Convex Framework for Confounding Robust Inference
Kei Ishikawa
Naio He
Takafumi Kanamori
OffRL
17
0
0
21 Sep 2023
Causal Strategic Learning with Competitive Selection
Kiet Q. H. Vo
Muneeb Aadil
Siu Lun Chau
Krikamol Muandet
CML
19
2
0
30 Aug 2023
Source Condition Double Robust Inference on Functionals of Inverse Problems
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
29
5
0
25 Jul 2023
Approximate Causal Effect Identification under Weak Confounding
Ziwei Jiang
Lai Wei
Murat Kocaoglu
CML
25
0
0
22 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
35
18
0
26 May 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
26
5
0
26 Apr 2023
Causal Effect Estimation with Variational AutoEncoder and the Front Door Criterion
Ziqi Xu
Debo Cheng
Jiuyong Li
Jixue Liu
Lin Liu
Kui Yu
CML
29
2
0
24 Apr 2023
Debiasing Conditional Stochastic Optimization
Lie He
S. Kasiviswanathan
CML
BDL
52
4
0
20 Apr 2023
A Unified Framework of Policy Learning for Contextual Bandit with Confounding Bias and Missing Observations
Siyu Chen
Yitan Wang
Zhaoran Wang
Zhuoran Yang
OffRL
36
2
0
20 Mar 2023
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
Junho Kim
Byung-Kwan Lee
Yonghyun Ro
CML
AAML
25
18
0
02 Mar 2023
Kernel Conditional Moment Constraints for Confounding Robust Inference
Kei Ishikawa
Niao He
OffRL
25
3
0
26 Feb 2023
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Elisabeth Ailer
Jason S. Hartford
Niki Kilbertus
CML
22
3
0
11 Feb 2023
Minimax Instrumental Variable Regression and
L
2
L_2
L
2
Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
33
14
0
10 Feb 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
Instrumental Variables in Causal Inference and Machine Learning: A Survey
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Fei Wu
SyDa
CML
25
6
0
12 Dec 2022
Causal Inference with Conditional Instruments using Deep Generative Models
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
29
11
0
29 Nov 2022
1
2
3
Next