ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00232
  4. Cited By
Kernel Instrumental Variable Regression

Kernel Instrumental Variable Regression

1 June 2019
Rahul Singh
M. Sahani
Arthur Gretton
ArXivPDFHTML

Papers citing "Kernel Instrumental Variable Regression"

50 / 110 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
A Unifying Framework for Causal Imitation Learning with Hidden Confounders
A Unifying Framework for Causal Imitation Learning with Hidden Confounders
Daqian Shao
Thomas Kleine Buening
Marta Z. Kwiatkowska
CML
71
1
0
11 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
73
3
0
04 Feb 2025
Testability of Instrumental Variables in Additive Nonlinear,
  Non-Constant Effects Models
Testability of Instrumental Variables in Additive Nonlinear, Non-Constant Effects Models
Xichen Guo
Zheng Li
Erdun Gao
Yan Zeng
Zhi Geng
Feng Xie
65
0
0
19 Nov 2024
An Overview of Causal Inference using Kernel Embeddings
An Overview of Causal Inference using Kernel Embeddings
Dino Sejdinovic
CML
BDL
35
2
0
30 Oct 2024
Learning Representations of Instruments for Partial Identification of
  Treatment Effects
Learning Representations of Instruments for Partial Identification of Treatment Effects
J. Schweisthal
Dennis Frauen
Maresa Schröder
Konstantin Hess
Niki Kilbertus
Stefan Feuerriegel
CML
34
1
0
11 Oct 2024
Transformers Handle Endogeneity in In-Context Linear Regression
Transformers Handle Endogeneity in In-Context Linear Regression
Haodong Liang
Krishnakumar Balasubramanian
Lifeng Lai
41
1
0
02 Oct 2024
Causal Effect Estimation using identifiable Variational AutoEncoder with
  Latent Confounders and Post-Treatment Variables
Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables
Yang Xie
Ziqi Xu
Debo Cheng
Jiuyong Li
Lin Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
26
0
0
13 Aug 2024
Generalized Encouragement-Based Instrumental Variables for
  Counterfactual Regression
Generalized Encouragement-Based Instrumental Variables for Counterfactual Regression
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Xiangwei Chen
Zexu Sun
Fei Wu
Kun Zhang
CML
27
0
0
10 Aug 2024
Causal Inference with Complex Treatments: A Survey
Causal Inference with Complex Treatments: A Survey
Yingrong Wang
Haoxuan Li
Minqin Zhu
Anpeng Wu
Ruoxuan Xiong
Fei Wu
Kun Kuang
CML
48
1
0
19 Jul 2024
Spectral Representation for Causal Estimation with Hidden Confounders
Spectral Representation for Causal Estimation with Hidden Confounders
Tongzheng Ren
Haotian Sun
Antoine Moulin
Arthur Gretton
Bo Dai
CML
32
1
0
15 Jul 2024
Nonparametric Jackknife Instrumental Variable Estimation and Confounding
  Robust Surrogate Indices
Nonparametric Jackknife Instrumental Variable Estimation and Confounding Robust Surrogate Indices
Aurélien F. Bibaut
Nathan Kallus
Apoorva Lal
CML
38
0
0
20 Jun 2024
Causal Inference with Latent Variables: Recent Advances and Future
  Prospectives
Causal Inference with Latent Variables: Recent Advances and Future Prospectives
Yaochen Zhu
Yinhan He
Jing Ma
Mengxuan Hu
Sheng Li
Jundong Li
CML
43
3
0
20 Jun 2024
Estimating Heterogeneous Treatment Effects by Combining Weak Instruments
  and Observational Data
Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
M. Oprescu
Nathan Kallus
CML
28
0
0
10 Jun 2024
Self-Distilled Disentangled Learning for Counterfactual Prediction
Self-Distilled Disentangled Learning for Counterfactual Prediction
Xinshu Li
Mingming Gong
Lina Yao
CML
35
2
0
09 Jun 2024
Probabilities of Causation for Continuous and Vector Variables
Probabilities of Causation for Continuous and Vector Variables
Yuta Kawakami
Manabu Kuroki
Jin Tian
27
4
0
30 May 2024
Targeted Sequential Indirect Experiment Design
Targeted Sequential Indirect Experiment Design
Elisabeth Ailer
Niclas Dern
Jason S. Hartford
Niki Kilbertus
46
1
0
30 May 2024
Stochastic Optimization Algorithms for Instrumental Variable Regression
  with Streaming Data
Stochastic Optimization Algorithms for Instrumental Variable Regression with Streaming Data
Xuxing Chen
Abhishek Roy
Yifan Hu
Krishnakumar Balasubramanian
43
1
0
29 May 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning
  Algorithms
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
43
4
0
23 May 2024
Geometry-Aware Instrumental Variable Regression
Geometry-Aware Instrumental Variable Regression
Heiner Kremer
Bernhard Schölkopf
46
0
0
19 May 2024
A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic
  Optimization
A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
Andrzej Ruszczyñski
Shangzhe Yang
29
0
0
17 May 2024
Learning Decision Policies with Instrumental Variables through Double
  Machine Learning
Learning Decision Policies with Instrumental Variables through Double Machine Learning
Daqian Shao
Ashkan Soleymani
Francesco Quinzan
Marta Z. Kwiatkowska
39
1
0
14 May 2024
Bounding Causal Effects with Leaky Instruments
Bounding Causal Effects with Leaky Instruments
David S. Watson
Jordan Penn
L. Gunderson
Gecia Bravo Hermsdorff
Afsaneh Mastouri
Ricardo M. A. Silva
CML
29
1
0
05 Apr 2024
Functional Bilevel Optimization for Machine Learning
Functional Bilevel Optimization for Machine Learning
Ieva Petrulionyte
Julien Mairal
Michael Arbel
51
2
0
29 Mar 2024
Neural-Kernel Conditional Mean Embeddings
Neural-Kernel Conditional Mean Embeddings
Eiki Shimizu
Kenji Fukumizu
Dino Sejdinovic
43
3
0
16 Mar 2024
Proxy Methods for Domain Adaptation
Proxy Methods for Domain Adaptation
Katherine Tsai
Stephen R. Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander DÁmour
Oluwasanmi Koyejo
Arthur Gretton
OOD
35
2
0
12 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
21
0
0
07 Mar 2024
Regularized DeepIV with Model Selection
Regularized DeepIV with Model Selection
Zihao Li
Hui Lan
Vasilis Syrgkanis
Mengdi Wang
Masatoshi Uehara
38
2
0
07 Mar 2024
Nonparametric Instrumental Variable Regression through Stochastic
  Approximate Gradients
Nonparametric Instrumental Variable Regression through Stochastic Approximate Gradients
Yuri S. Fonseca
Caio Peixoto
Yuri F. Saporito
42
2
0
08 Feb 2024
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized
  Least-Squares Algorithm
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
31
5
0
12 Dec 2023
Counterfactual Prediction Under Selective Confounding
Counterfactual Prediction Under Selective Confounding
Sohaib Kiani
Jared Barton
Jon Sushinsky
Lynda Heimbach
Bo Luo
CML
19
1
0
21 Oct 2023
Federated Conditional Stochastic Optimization
Federated Conditional Stochastic Optimization
Xidong Wu
Jianhui Sun
Zhengmian Hu
Junyi Li
Aidong Zhang
Heng-Chiao Huang
FedML
44
4
0
04 Oct 2023
Causal Inference with Conditional Front-Door Adjustment and Identifiable
  Variational Autoencoder
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
Ziqi Xu
Debo Cheng
Jiuyong Li
Jixue Liu
Lin Liu
Kui Yu
CML
39
9
0
03 Oct 2023
Conditional Instrumental Variable Regression with Representation
  Learning for Causal Inference
Conditional Instrumental Variable Regression with Representation Learning for Causal Inference
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
19
6
0
03 Oct 2023
A Convex Framework for Confounding Robust Inference
A Convex Framework for Confounding Robust Inference
Kei Ishikawa
Naio He
Takafumi Kanamori
OffRL
17
0
0
21 Sep 2023
Causal Strategic Learning with Competitive Selection
Causal Strategic Learning with Competitive Selection
Kiet Q. H. Vo
Muneeb Aadil
Siu Lun Chau
Krikamol Muandet
CML
19
2
0
30 Aug 2023
Source Condition Double Robust Inference on Functionals of Inverse
  Problems
Source Condition Double Robust Inference on Functionals of Inverse Problems
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
29
5
0
25 Jul 2023
Approximate Causal Effect Identification under Weak Confounding
Approximate Causal Effect Identification under Weak Confounding
Ziwei Jiang
Lai Wei
Murat Kocaoglu
CML
25
0
0
22 Jun 2023
Sharp Bounds for Generalized Causal Sensitivity Analysis
Sharp Bounds for Generalized Causal Sensitivity Analysis
Dennis Frauen
Valentyn Melnychuk
Stefan Feuerriegel
CML
35
18
0
26 May 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
26
5
0
26 Apr 2023
Causal Effect Estimation with Variational AutoEncoder and the Front Door
  Criterion
Causal Effect Estimation with Variational AutoEncoder and the Front Door Criterion
Ziqi Xu
Debo Cheng
Jiuyong Li
Jixue Liu
Lin Liu
Kui Yu
CML
29
2
0
24 Apr 2023
Debiasing Conditional Stochastic Optimization
Debiasing Conditional Stochastic Optimization
Lie He
S. Kasiviswanathan
CML
BDL
52
4
0
20 Apr 2023
A Unified Framework of Policy Learning for Contextual Bandit with
  Confounding Bias and Missing Observations
A Unified Framework of Policy Learning for Contextual Bandit with Confounding Bias and Missing Observations
Siyu Chen
Yitan Wang
Zhaoran Wang
Zhuoran Yang
OffRL
36
2
0
20 Mar 2023
Demystifying Causal Features on Adversarial Examples and Causal
  Inoculation for Robust Network by Adversarial Instrumental Variable
  Regression
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
Junho Kim
Byung-Kwan Lee
Yonghyun Ro
CML
AAML
25
18
0
02 Mar 2023
Kernel Conditional Moment Constraints for Confounding Robust Inference
Kernel Conditional Moment Constraints for Confounding Robust Inference
Kei Ishikawa
Niao He
OffRL
25
3
0
26 Feb 2023
Sequential Underspecified Instrument Selection for Cause-Effect
  Estimation
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Elisabeth Ailer
Jason S. Hartford
Niki Kilbertus
CML
22
3
0
11 Feb 2023
Minimax Instrumental Variable Regression and $L_2$ Convergence
  Guarantees without Identification or Closedness
Minimax Instrumental Variable Regression and L2L_2L2​ Convergence Guarantees without Identification or Closedness
Andrew Bennett
Nathan Kallus
Xiaojie Mao
Whitney Newey
Vasilis Syrgkanis
Masatoshi Uehara
33
14
0
10 Feb 2023
An Analysis of Attention via the Lens of Exchangeability and Latent
  Variable Models
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
53
11
0
30 Dec 2022
Instrumental Variables in Causal Inference and Machine Learning: A
  Survey
Instrumental Variables in Causal Inference and Machine Learning: A Survey
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Fei Wu
SyDa
CML
25
6
0
12 Dec 2022
Causal Inference with Conditional Instruments using Deep Generative
  Models
Causal Inference with Conditional Instruments using Deep Generative Models
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
T. Le
CML
29
11
0
29 Nov 2022
123
Next