ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.00742
  4. Cited By
Gender-preserving Debiasing for Pre-trained Word Embeddings

Gender-preserving Debiasing for Pre-trained Word Embeddings

3 June 2019
Masahiro Kaneko
Danushka Bollegala
    FaML
ArXiv (abs)PDFHTML

Papers citing "Gender-preserving Debiasing for Pre-trained Word Embeddings"

23 / 73 papers shown
Title
Obtaining Better Static Word Embeddings Using Contextual Embedding
  Models
Obtaining Better Static Word Embeddings Using Contextual Embedding Models
Prakhar Gupta
Martin Jaggi
81
30
0
08 Jun 2021
Unmasking the Mask -- Evaluating Social Biases in Masked Language Models
Unmasking the Mask -- Evaluating Social Biases in Masked Language Models
Masahiro Kaneko
Danushka Bollegala
63
72
0
15 Apr 2021
An Interpretability Illusion for BERT
An Interpretability Illusion for BERT
Tolga Bolukbasi
Adam Pearce
Ann Yuan
Andy Coenen
Emily Reif
Fernanda Viégas
Martin Wattenberg
MILMFAtt
100
82
0
14 Apr 2021
FairFil: Contrastive Neural Debiasing Method for Pretrained Text
  Encoders
FairFil: Contrastive Neural Debiasing Method for Pretrained Text Encoders
Pengyu Cheng
Weituo Hao
Siyang Yuan
Shijing Si
Lawrence Carin
77
105
0
11 Mar 2021
Dictionary-based Debiasing of Pre-trained Word Embeddings
Dictionary-based Debiasing of Pre-trained Word Embeddings
Masahiro Kaneko
Danushka Bollegala
FaML
97
38
0
23 Jan 2021
Debiasing Pre-trained Contextualised Embeddings
Debiasing Pre-trained Contextualised Embeddings
Masahiro Kaneko
Danushka Bollegala
260
143
0
23 Jan 2021
Debiasing Convolutional Neural Networks via Meta Orthogonalization
Debiasing Convolutional Neural Networks via Meta Orthogonalization
Kurtis Evan David
Qiang Liu
Ruth C. Fong
FaML
41
3
0
15 Nov 2020
Situated Data, Situated Systems: A Methodology to Engage with Power
  Relations in Natural Language Processing Research
Situated Data, Situated Systems: A Methodology to Engage with Power Relations in Natural Language Processing Research
Lucy Havens
Melissa Mhairi Terras
Benjamin Bach
Beatrice Alex
87
22
0
11 Nov 2020
Fair Embedding Engine: A Library for Analyzing and Mitigating Gender
  Bias in Word Embeddings
Fair Embedding Engine: A Library for Analyzing and Mitigating Gender Bias in Word Embeddings
Vaibhav Kumar
Tenzin Singhay Bhotia
Vaibhav Kumar
FaML
35
2
0
25 Oct 2020
Autoencoding Improves Pre-trained Word Embeddings
Autoencoding Improves Pre-trained Word Embeddings
Masahiro Kaneko
Danushka Bollegala
LLMSV
56
14
0
25 Oct 2020
Detect All Abuse! Toward Universal Abusive Language Detection Models
Detect All Abuse! Toward Universal Abusive Language Detection Models
Kunze Wang
Dong Lu
S. Han
Siqu Long
Josiah Poon
84
23
0
08 Oct 2020
Robustness and Reliability of Gender Bias Assessment in Word Embeddings:
  The Role of Base Pairs
Robustness and Reliability of Gender Bias Assessment in Word Embeddings: The Role of Base Pairs
Haiyang Zhang
Alison Sneyd
Mark Stevenson
41
14
0
06 Oct 2020
Reflection-based Word Attribute Transfer
Reflection-based Word Attribute Transfer
Yoichi Ishibashi
Katsuhito Sudoh
Koichiro Yoshino
Satoshi Nakamura
CVBM
13
3
0
06 Jul 2020
MDR Cluster-Debias: A Nonlinear WordEmbedding Debiasing Pipeline
MDR Cluster-Debias: A Nonlinear WordEmbedding Debiasing Pipeline
Yuhao Du
K. Joseph
29
3
0
20 Jun 2020
Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased
  Proximities in Word Embeddings
Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased Proximities in Word Embeddings
Vaibhav Kumar
Tenzin Singhay Bhotia
Vaibhav Kumar
Tanmoy Chakraborty
CVBM
84
46
0
02 Jun 2020
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
Language (Technology) is Power: A Critical Survey of "Bias" in NLP
Su Lin Blodgett
Solon Barocas
Hal Daumé
Hanna M. Wallach
159
1,257
0
28 May 2020
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Tianlu Wang
Xi Lin
Nazneen Rajani
Bryan McCann
Vicente Ordonez
Caimng Xiong
CVBM
251
57
0
03 May 2020
Multi-Dimensional Gender Bias Classification
Multi-Dimensional Gender Bias Classification
Emily Dinan
Angela Fan
Ledell Yu Wu
Jason Weston
Douwe Kiela
Adina Williams
FaML
77
124
0
01 May 2020
Beneath the Tip of the Iceberg: Current Challenges and New Directions in
  Sentiment Analysis Research
Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research
Soujanya Poria
Devamanyu Hazarika
Navonil Majumder
Rada Mihalcea
135
222
0
01 May 2020
Neutralizing Gender Bias in Word Embedding with Latent Disentanglement
  and Counterfactual Generation
Neutralizing Gender Bias in Word Embedding with Latent Disentanglement and Counterfactual Generation
Seung-Jae Shin
Kyungwoo Song
Joonho Jang
Hyemi Kim
Weonyoung Joo
Il-Chul Moon
78
21
0
07 Apr 2020
A Causal Inference Method for Reducing Gender Bias in Word Embedding
  Relations
A Causal Inference Method for Reducing Gender Bias in Word Embedding Relations
Zekun Yang
Juan Feng
FaML
57
35
0
25 Nov 2019
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan
Angela Fan
Adina Williams
Jack Urbanek
Douwe Kiela
Jason Weston
121
208
0
10 Nov 2019
Measuring Societal Biases from Text Corpora with Smoothed First-Order
  Co-occurrence
Measuring Societal Biases from Text Corpora with Smoothed First-Order Co-occurrence
Navid Rekabsaz
Robert West
James Henderson
Allan Hanbury
33
0
0
13 Dec 2018
Previous
12