ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02226
  4. Cited By
Gradient-Based Neural DAG Learning
v1v2 (latest)

Gradient-Based Neural DAG Learning

5 June 2019
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
    BDLCML
ArXiv (abs)PDFHTML

Papers citing "Gradient-Based Neural DAG Learning"

50 / 188 papers shown
Title
Reinforcement Causal Structure Learning on Order Graph
Reinforcement Causal Structure Learning on Order Graph
Dezhi Yang
Guoxian Yu
Jun Wang
Zhe Wu
Maozu Guo
BDLCML
100
16
0
22 Nov 2022
Realization of Causal Representation Learning to Adjust Confounding Bias
  in Latent Space
Realization of Causal Representation Learning to Adjust Confounding Bias in Latent Space
Jia Li
Xiang Li
X. Jia
M. Steinbach
Vipin Kumar
CMLOODAI4CE
109
0
0
15 Nov 2022
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Towards Privacy-Aware Causal Structure Learning in Federated Setting
Jianli Huang
Xianjie Guo
Kui Yu
Fuyuan Cao
Jiye Liang
FedML
68
9
0
13 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CMLBDL
119
11
0
07 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and
  Variational Bayes
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDLCML
111
29
0
04 Nov 2022
Learning Discrete Directed Acyclic Graphs via Backpropagation
Learning Discrete Directed Acyclic Graphs via Backpropagation
A. Wren
Pasquale Minervini
Luca Franceschi
Valentina Zantedeschi
58
2
0
27 Oct 2022
Learning Latent Structural Causal Models
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
94
7
0
24 Oct 2022
Causal Structure Learning with Recommendation System
Causal Structure Learning with Recommendation System
Shuyuan Xu
Da Xu
Evren Körpeoglu
Sushant Kumar
Stephen D. Guo
Kannan Achan
Yongfeng Zhang
CML
77
6
0
19 Oct 2022
GFlowCausal: Generative Flow Networks for Causal Discovery
GFlowCausal: Generative Flow Networks for Causal Discovery
Wenqian Li
Yinchuan Li
Shengyu Zhu
Yunfeng Shao
Jianye Hao
Yan Pang
BDLCML
65
12
0
15 Oct 2022
Causality-driven Hierarchical Structure Discovery for Reinforcement
  Learning
Causality-driven Hierarchical Structure Discovery for Reinforcement Learning
Shaohui Peng
Xin Hu
Rui Zhang
Ke Tang
Jiaming Guo
...
Xishan Zhang
Zidong Du
Ling Li
Qi Guo
Yunji Chen
76
23
0
13 Oct 2022
Diffusion Models for Causal Discovery via Topological Ordering
Diffusion Models for Causal Discovery via Topological Ordering
Pedro Sanchez
Xiao Liu
Alison Q. OÑeil
Sotirios A. Tsaftaris
DiffM
149
49
0
12 Oct 2022
Neural Graphical Models
Neural Graphical Models
H. Shrivastava
Urszula Chajewska
101
11
0
02 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity
  Characterization
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
115
84
0
16 Sep 2022
On the Sparse DAG Structure Learning Based on Adaptive Lasso
On the Sparse DAG Structure Learning Based on Adaptive Lasso
Danru Xu
Erdun Gao
Wei Huang
Menghan Wang
Andy Song
Biwei Huang
CML
85
4
0
07 Sep 2022
Truncated Matrix Power Iteration for Differentiable DAG Learning
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang
Ignavier Ng
Dong Gong
Yuhang Liu
Ehsan Abbasnejad
Biwei Huang
Kun Zhang
Javen Qinfeng Shi
75
25
0
30 Aug 2022
Novel Ordering-based Approaches for Causal Structure Learning in the
  Presence of Unobserved Variables
Novel Ordering-based Approaches for Causal Structure Learning in the Presence of Unobserved Variables
Ehsan Mokhtarian
M. Khorasani
Jalal Etesami
Negar Kiyavash
CML
80
7
0
14 Aug 2022
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
Yanke Li
Hatt Tobias
Ioana Bica
M. Schaar
CML
78
0
0
02 Aug 2022
Towards Intercultural Affect Recognition: Audio-Visual Affect
  Recognition in the Wild Across Six Cultures
Towards Intercultural Affect Recognition: Audio-Visual Affect Recognition in the Wild Across Six Cultures
Leena Mathur
R. Adolphs
Maja J. Matarić
CVBM
88
1
0
31 Jul 2022
The tropical geometry of causal inference for extremes
The tropical geometry of causal inference for extremes
N. Tran
CML
52
4
0
20 Jul 2022
Multiscale Causal Structure Learning
Multiscale Causal Structure Learning
Gabriele DÁcunto
P. Lorenzo
Sergio Barbarossa
98
7
0
16 Jul 2022
Reframed GES with a Neural Conditional Dependence Measure
Reframed GES with a Neural Conditional Dependence Measure
Xinwei Shen
Shengyu Zhu
Jiji Zhang
Shoubo Hu
Zhitang Chen
CML
29
3
0
17 Jun 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CMLAI4CE
87
43
0
15 Jun 2022
Invariant Structure Learning for Better Generalization and Causal
  Explainability
Invariant Structure Learning for Better Generalization and Causal Explainability
Yunhao Ge
Sercan O. Arik
Jinsung Yoon
Ao Xu
Laurent Itti
Tomas Pfister
OODCML
49
2
0
13 Jun 2022
Differentiable and Transportable Structure Learning
Differentiable and Transportable Structure Learning
Jeroen Berrevoets
Nabeel Seedat
F. Imrie
M. Schaar
87
2
0
13 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CMLOODBDLTTA
80
8
0
09 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CMLBDL
119
22
0
03 Jun 2022
Causality Learning With Wasserstein Generative Adversarial Networks
Causality Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
CMLGANOOD
25
0
0
03 Jun 2022
Causal Structure Learning: a Combinatorial Perspective
Causal Structure Learning: a Combinatorial Perspective
C. Squires
Caroline Uhler
CML
120
47
0
02 Jun 2022
Differentiable Invariant Causal Discovery
Differentiable Invariant Causal Discovery
Yu Wang
An Zhang
Xiang Wang
Yancheng Yuan
Xiangnan He
Tat-Seng Chua
OODCML
135
2
0
31 May 2022
MissDAG: Causal Discovery in the Presence of Missing Data with
  Continuous Additive Noise Models
MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models
Erdun Gao
Ignavier Ng
Biwei Huang
Li Shen
Wei Huang
Tongliang Liu
Kun Zhang
H. Bondell
CML
139
23
0
27 May 2022
Amortized Inference for Causal Structure Learning
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
116
65
0
25 May 2022
Improving Multi-Task Generalization via Regularizing Spurious
  Correlation
Improving Multi-Task Generalization via Regularizing Spurious Correlation
Ziniu Hu
Zhe Zhao
Xinyang Yi
Tiansheng Yao
Lichan Hong
Yizhou Sun
Ed H. Chi
OODLRM
142
30
0
19 May 2022
DAG-WGAN: Causal Structure Learning With Wasserstein Generative
  Adversarial Networks
DAG-WGAN: Causal Structure Learning With Wasserstein Generative Adversarial Networks
H. Petkov
Colin Hanley
Feng Dong
GANOODCML
65
6
0
01 Apr 2022
Differentiable DAG Sampling
Differentiable DAG Sampling
Bertrand Charpentier
Simon Kibler
Stephan Günnemann
100
42
0
16 Mar 2022
Score matching enables causal discovery of nonlinear additive noise
  models
Score matching enables causal discovery of nonlinear additive noise models
Paul Rolland
Volkan Cevher
Matthäus Kleindessner
Chris Russel
Bernhard Schölkopf
Dominik Janzing
Francesco Locatello
CML
99
90
0
08 Mar 2022
Differentiable Causal Discovery Under Latent Interventions
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDLCMLOOD
89
23
0
04 Mar 2022
GCS: Graph-based Coordination Strategy for Multi-Agent Reinforcement
  Learning
GCS: Graph-based Coordination Strategy for Multi-Agent Reinforcement Learning
Jingqing Ruan
Yali Du
Xuantang Xiong
Dengpeng Xing
Xiyun Li
Linghui Meng
Haifeng Zhang
Jun Wang
Bo Xu
89
30
0
17 Jan 2022
FedDAG: Federated DAG Structure Learning
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Biwei Huang
H. Bondell
FedML
87
17
0
07 Dec 2021
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
127
61
0
30 Nov 2021
Multi-task Learning of Order-Consistent Causal Graphs
Multi-task Learning of Order-Consistent Causal Graphs
Xinshi Chen
Haoran Sun
Caleb N. Ellington
Eric Xing
Le Song
CML
92
15
0
03 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
91
38
0
18 Oct 2021
Simultaneous Missing Value Imputation and Structure Learning with Groups
Simultaneous Missing Value Imputation and Structure Learning with Groups
Pablo Morales-Álvarez
Wenbo Gong
A. Lamb
Simon Woodhead
Simon L. Peyton Jones
Nick Pawlowski
Miltiadis Allamanis
Cheng Zhang
138
18
0
15 Oct 2021
Scalable Causal Structure Learning: Scoping Review of Traditional and
  Deep Learning Algorithms and New Opportunities in Biomedicine
Scalable Causal Structure Learning: Scoping Review of Traditional and Deep Learning Algorithms and New Opportunities in Biomedicine
Pulakesh Upadhyaya
Kai Zhang
Can Li
Xiaoqian Jiang
Yejin Kim
CML
74
9
0
15 Oct 2021
NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge
NTS-NOTEARS: Learning Nonparametric DBNs With Prior Knowledge
Xiangyuan Sun
Oliver Schulte
Guiliang Liu
Pascal Poupart
CMLBDL
105
22
0
09 Sep 2021
Learning Neural Causal Models with Active Interventions
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
123
44
0
06 Sep 2021
A Stochastic Variance-Reduced Coordinate Descent Algorithm for Learning
  Sparse Bayesian Network from Discrete High-Dimensional Data
A Stochastic Variance-Reduced Coordinate Descent Algorithm for Learning Sparse Bayesian Network from Discrete High-Dimensional Data
Nazanin Shajoonnezhad
Amin Nikanjam
45
3
0
21 Aug 2021
Efficient Neural Causal Discovery without Acyclicity Constraints
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe
Taco S. Cohen
E. Gavves
CML
102
72
0
22 Jul 2021
Beyond Predictions in Neural ODEs: Identification and Interventions
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
118
25
0
23 Jun 2021
Identifiability of AMP chain graph models
Identifiability of AMP chain graph models
Yuhao Wang
Arnab Bhattacharyya
CML
22
0
0
17 Jun 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal
  Structures
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDLCML
84
48
0
14 Jun 2021
Previous
1234
Next