Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02337
Cited By
MNIST-C: A Robustness Benchmark for Computer Vision
5 June 2019
Norman Mu
Justin Gilmer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MNIST-C: A Robustness Benchmark for Computer Vision"
41 / 41 papers shown
Title
WATCH: Adaptive Monitoring for AI Deployments via Weighted-Conformal Martingales
Drew Prinster
Xing Han
Anqi Liu
S. Saria
30
0
0
07 May 2025
MetaSel: A Test Selection Approach for Fine-tuned DNN Models
Amin Abbasishahkoo
Mahboubeh Dadkhah
Lionel C. Briand
Dayi Lin
49
0
0
21 Mar 2025
On the Promise for Assurance of Differentiable Neurosymbolic Reasoning Paradigms
Luke E. Richards
Jessie Yaros
Jasen Babcock
Coung Ly
Robin Cosbey
Timothy Doster
Cynthia Matuszek
NAI
64
0
0
13 Feb 2025
Holistic chemical evaluation reveals pitfalls in reaction prediction models
Victor Sabanza Gil
Andres M Bran
Malte Franke
Remi Schlama
J. Luterbacher
Philippe Schwaller
ELM
25
1
0
14 Dec 2023
Neither hype nor gloom do DNNs justice
Gaurav Malhotra
Christian Tsvetkov
B. D. Evans
21
118
0
08 Dec 2023
Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization
Yongyi Su
Xun Xu
K. Jia
TTA
70
22
0
26 Sep 2023
VisAlign: Dataset for Measuring the Degree of Alignment between AI and Humans in Visual Perception
Jiyoung Lee
Seung Wook Kim
Seunghyun Won
Joonseok Lee
Marzyeh Ghassemi
James Thorne
Jaeseok Choi
O.-Kil Kwon
E. Choi
24
1
0
03 Aug 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
Structural Restricted Boltzmann Machine for image denoising and classification
Arkaitz Bidaurrazaga
A. Pérez
Roberto Santana
AI4CE
14
0
0
16 Jun 2023
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
38
0
0
24 Mar 2023
Analyzing Effects of Fake Training Data on the Performance of Deep Learning Systems
Pratinav Seth
Akshat Bhandari
Kumud Lakara
15
0
0
02 Mar 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
18
207
0
09 Feb 2023
Benchmark for Uncertainty & Robustness in Self-Supervised Learning
H. Bui
Iliana Maifeld-Carucci
OOD
19
1
0
23 Dec 2022
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
19
7
0
18 Dec 2022
Efficient Bayes Inference in Neural Networks through Adaptive Importance Sampling
Yunshi Huang
Émilie Chouzenoux
Victor Elvira
J. Pesquet
BDL
14
5
0
03 Oct 2022
Reconstruction-guided attention improves the robustness and shape processing of neural networks
Seoyoung Ahn
Hossein Adeli
G. Zelinsky
DiffM
AAML
25
1
0
27 Sep 2022
NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
Taesik Gong
Jongheon Jeong
Taewon Kim
Yewon Kim
Jinwoo Shin
Sung-Ju Lee
OOD
TTA
24
120
0
10 Aug 2022
Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing
Michael Weiss
A. Gómez
Paolo Tonella
AAML
13
6
0
21 Jul 2022
Understanding the effect of sparsity on neural networks robustness
Lukas Timpl
R. Entezari
Hanie Sedghi
Behnam Neyshabur
O. Saukh
31
11
0
22 Jun 2022
ADBench: Anomaly Detection Benchmark
Songqiao Han
Xiyang Hu
Hailiang Huang
Mingqi Jiang
Yue Zhao
OOD
32
295
0
19 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
M. Petreczky
27
1
0
16 Jun 2022
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky
Viktor Andersson
Balázs Kulcsár
Rebecka Jörnsten
37
5
0
25 May 2022
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study)
Michael Weiss
Paolo Tonella
AAML
8
49
0
02 May 2022
LaF: Labeling-Free Model Selection for Automated Deep Neural Network Reusing
Qiang Hu
Yuejun Guo
Maxime Cordy
Xiaofei Xie
Mike Papadakis
Yves Le Traon
21
5
0
08 Apr 2022
Semi-supervised anomaly detection algorithm based on KL divergence (SAD-KL)
C. Lee
Kibae Lee
36
4
0
28 Mar 2022
Generalized but not Robust? Comparing the Effects of Data Modification Methods on Out-of-Domain Generalization and Adversarial Robustness
Tejas Gokhale
Swaroop Mishra
Man Luo
Bhavdeep Singh Sachdeva
Chitta Baral
42
29
0
15 Mar 2022
Fourier-Based Augmentations for Improved Robustness and Uncertainty Calibration
Ryan Soklaski
Michael Yee
Theodoros Tsiligkaridis
AAML
14
14
0
24 Feb 2022
OmniPrint: A Configurable Printed Character Synthesizer
Haozhe Sun
Wei-Wei Tu
Isabelle M Guyon
SyDa
32
7
0
17 Jan 2022
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration
Cian Eastwood
I. Mason
Christopher K. I. Williams
Bernhard Schölkopf
TTA
16
50
0
12 Jul 2021
Test-Time Adaptation to Distribution Shift by Confidence Maximization and Input Transformation
Chaithanya Kumar Mummadi
Robin Hutmacher
K. Rambach
Evgeny Levinkov
Thomas Brox
J. H. Metzen
TTA
OOD
27
69
0
28 Jun 2021
Exposing Previously Undetectable Faults in Deep Neural Networks
Isaac Dunn
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
23
28
0
01 Jun 2021
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators
David Stutz
Nandhini Chandramoorthy
Matthias Hein
Bernt Schiele
AAML
MQ
20
18
0
16 Apr 2021
A Review and Refinement of Surprise Adequacy
Michael Weiss
Rwiddhi Chakraborty
Paolo Tonella
AAML
AI4TS
11
16
0
10 Mar 2021
Grid Cell Path Integration For Movement-Based Visual Object Recognition
Niels Leadholm
Marcus Lewis
Subutai Ahmad
31
6
0
17 Feb 2021
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
43
8
0
03 Nov 2020
Regularizing Towards Permutation Invariance in Recurrent Models
Edo Cohen-Karlik
Avichai Ben David
Amir Globerson
OOD
11
15
0
25 Oct 2020
Robust and Generalizable Visual Representation Learning via Random Convolutions
Zhenlin Xu
Deyi Liu
Junlin Yang
Colin Raffel
Marc Niethammer
OOD
AAML
46
190
0
25 Jul 2020
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
31
457
0
30 Jun 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
19
64
0
16 Jan 2020
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
17
71
0
05 Jul 2019
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
11
7
0
27 Oct 2018
1