ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02717
  4. Cited By
Adaptive Gradient-Based Meta-Learning Methods

Adaptive Gradient-Based Meta-Learning Methods

6 June 2019
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
    FedML
ArXivPDFHTML

Papers citing "Adaptive Gradient-Based Meta-Learning Methods"

40 / 90 papers shown
Title
Bootstrapped Meta-Learning
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
58
0
09 Sep 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
101
241
0
09 Sep 2021
Federated Multi-Task Learning under a Mixture of Distributions
Federated Multi-Task Learning under a Mixture of Distributions
Othmane Marfoq
Giovanni Neglia
A. Bellet
Laetitia Kameni
Richard Vidal
FedML
40
269
0
23 Aug 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
On Bridging Generic and Personalized Federated Learning for Image
  Classification
On Bridging Generic and Personalized Federated Learning for Image Classification
Hong-You Chen
Wei-Lun Chao
FedML
22
21
0
02 Jul 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient
  Training and Effective Adaptation
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Bo-wen Li
37
88
0
16 Jun 2021
On the Power of Multitask Representation Learning in Linear MDP
On the Power of Multitask Representation Learning in Linear MDP
Rui Lu
Gao Huang
S. Du
27
28
0
15 Jun 2021
Meta-Adaptive Nonlinear Control: Theory and Algorithms
Meta-Adaptive Nonlinear Control: Theory and Algorithms
Guanya Shi
Kamyar Azizzadenesheli
Michael O'Connell
Soon-Jo Chung
Yisong Yue
29
41
0
11 Jun 2021
No Fear of Heterogeneity: Classifier Calibration for Federated Learning
  with Non-IID Data
No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data
Mi Luo
Fei Chen
Dapeng Hu
Yifan Zhang
Jian Liang
Jiashi Feng
FedML
28
328
0
09 Jun 2021
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections
  to Weight-Sharing
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
35
78
0
08 Jun 2021
Signal Transformer: Complex-valued Attention and Meta-Learning for
  Signal Recognition
Signal Transformer: Complex-valued Attention and Meta-Learning for Signal Recognition
Yihong Dong
Ying Peng
Muqiao Yang
Songtao Lu
Qingjiang Shi
40
9
0
05 Jun 2021
FedGL: Federated Graph Learning Framework with Global Self-Supervision
FedGL: Federated Graph Learning Framework with Global Self-Supervision
Chuan Chen
Weibo Hu
Ziyue Xu
Zibin Zheng
FedML
27
54
0
07 May 2021
Convergence and Accuracy Trade-Offs in Federated Learning and
  Meta-Learning
Convergence and Accuracy Trade-Offs in Federated Learning and Meta-Learning
Zachary B. Charles
Jakub Konecný
FedML
23
63
0
08 Mar 2021
Towards Personalized Federated Learning
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
209
840
0
01 Mar 2021
Two Sides of Meta-Learning Evaluation: In vs. Out of Distribution
Two Sides of Meta-Learning Evaluation: In vs. Out of Distribution
Amrith Rajagopal Setlur
Oscar Li
Virginia Smith
35
13
0
23 Feb 2021
Personalized Federated Learning: A Unified Framework and Universal
  Optimization Techniques
Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques
Filip Hanzely
Boxin Zhao
Mladen Kolar
FedML
27
52
0
19 Feb 2021
Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and
  Unseen Tasks
Generalization of Model-Agnostic Meta-Learning Algorithms: Recurring and Unseen Tasks
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
25
49
0
07 Feb 2021
Federated Learning under Importance Sampling
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
16
52
0
14 Dec 2020
A Distribution-Dependent Analysis of Meta-Learning
A Distribution-Dependent Analysis of Meta-Learning
Mikhail Konobeev
Ilja Kuzborskij
Csaba Szepesvári
OOD
16
5
0
31 Oct 2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
41
186
0
05 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for
  Heterogeneous Clients
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
26
543
0
03 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
32
0
0
26 Aug 2020
LotteryFL: Personalized and Communication-Efficient Federated Learning
  with Lottery Ticket Hypothesis on Non-IID Datasets
LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets
Ang Li
Jingwei Sun
Binghui Wang
Lin Duan
Sicheng Li
Yiran Chen
H. Li
FedML
19
125
0
07 Aug 2020
Online Parameter-Free Learning of Multiple Low Variance Tasks
Online Parameter-Free Learning of Multiple Low Variance Tasks
Giulia Denevi
Dimitris Stamos
Massimiliano Pontil
6
0
0
11 Jul 2020
Federated Mutual Learning
Federated Mutual Learning
T. Shen
Jie Zhang
Xinkang Jia
Fengda Zhang
Gang Huang
Pan Zhou
Kun Kuang
Fei Wu
Chao-Xiang Wu
FedML
19
120
0
27 Jun 2020
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Weighted Meta-Learning
Weighted Meta-Learning
Diana Cai
Rishit Sheth
Lester W. Mackey
Nicolò Fusi
35
12
0
20 Mar 2020
Survey of Personalization Techniques for Federated Learning
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
326
0
19 Mar 2020
PAC-Bayes meta-learning with implicit task-specific posteriors
PAC-Bayes meta-learning with implicit task-specific posteriors
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
BDL
39
7
0
05 Mar 2020
Three Approaches for Personalization with Applications to Federated
  Learning
Three Approaches for Personalization with Applications to Federated Learning
Yishay Mansour
M. Mohri
Jae Hun Ro
A. Suresh
FedML
45
565
0
25 Feb 2020
Provable Representation Learning for Imitation Learning via Bi-level
  Optimization
Provable Representation Learning for Imitation Learning via Bi-level Optimization
Sanjeev Arora
S. Du
Sham Kakade
Yuping Luo
Nikunj Saunshi
18
60
0
24 Feb 2020
Dynamic Federated Learning
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
16
25
0
20 Feb 2020
Personalized Federated Learning: A Meta-Learning Approach
Personalized Federated Learning: A Meta-Learning Approach
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
FedML
36
561
0
19 Feb 2020
Geometric Dataset Distances via Optimal Transport
Geometric Dataset Distances via Optimal Transport
David Alvarez-Melis
Nicolò Fusi
OT
72
194
0
07 Feb 2020
FedMD: Heterogenous Federated Learning via Model Distillation
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
18
830
0
08 Oct 2019
Improving Federated Learning Personalization via Model Agnostic Meta
  Learning
Improving Federated Learning Personalization via Model Agnostic Meta Learning
Yihan Jiang
Jakub Konecný
Keith Rush
Sreeram Kannan
FedML
19
586
0
27 Sep 2019
Differentially Private Meta-Learning
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
33
106
0
12 Sep 2019
Modular Meta-Learning with Shrinkage
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELM
OffRL
15
35
0
12 Sep 2019
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
51
1,393
0
03 Dec 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
Previous
12