ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03028
  4. Cited By
Automatic Reparameterisation of Probabilistic Programs

Automatic Reparameterisation of Probabilistic Programs

7 June 2019
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
ArXiv (abs)PDFHTML

Papers citing "Automatic Reparameterisation of Probabilistic Programs"

10 / 10 papers shown
Title
Efficiently Vectorized MCMC on Modern Accelerators
Efficiently Vectorized MCMC on Modern Accelerators
Hugh Dance
Pierre Glaser
Peter Orbanz
Ryan P. Adams
85
0
0
20 Mar 2025
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
128
0
0
31 Oct 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
233
1
0
22 Jul 2024
Supporting Bayesian modelling workflows with iterative filtering for
  multiverse analysis
Supporting Bayesian modelling workflows with iterative filtering for multiverse analysis
Anna Elisabeth Riha
Nikolas Siccha
Antti Oulasvirta
Aki Vehtari
69
0
0
02 Apr 2024
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Bürkner
151
3
0
08 Dec 2023
Automatically Marginalized MCMC in Probabilistic Programming
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
87
3
0
01 Feb 2023
Smoothness Analysis for Probabilistic Programs with Application to
  Optimised Variational Inference
Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference
Wonyeol Lee
Xavier Rival
Hongseok Yang
98
10
0
22 Aug 2022
Guaranteed Bounds for Posterior Inference in Universal Probabilistic
  Programming
Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming
Raven Beutner
Luke Ong
Fabian Zaiser
62
12
0
06 Apr 2022
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDLTPMAI4CE
99
4
0
12 Oct 2021
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
94
63
0
22 Jun 2020
1