Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.03109
Cited By
The Architectural Implications of Facebook's DNN-based Personalized Recommendation
6 June 2019
Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
David Brooks
Bradford Cottel
K. Hazelwood
Bill Jia
Hsien-Hsin S. Lee
Andrey Malevich
Dheevatsa Mudigere
M. Smelyanskiy
Liang Xiong
Xuan Zhang
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Architectural Implications of Facebook's DNN-based Personalized Recommendation"
34 / 34 papers shown
Title
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Yejin Lee
Anna Y. Sun
Basil Hosmer
Bilge Acun
Can Balioglu
...
Ram Pasunuru
Scott Yih
Sravya Popuri
Xing Liu
Carole-Jean Wu
52
2
0
30 Sep 2024
FedSlate:A Federated Deep Reinforcement Learning Recommender System
Yongxin Deng
Xihe Qiu
Xiaoyu Tan
Yaochu Jin
FedML
88
0
0
23 Sep 2024
ElasticRec: A Microservice-based Model Serving Architecture Enabling Elastic Resource Scaling for Recommendation Models
Yujeong Choi
Jiin Kim
Minsoo Rhu
32
1
0
11 Jun 2024
ACCL+: an FPGA-Based Collective Engine for Distributed Applications
Zhenhao He
Dario Korolija
Yu Zhu
Benjamin Ramhorst
Tristan Laan
L. Petrica
Michaela Blott
Gustavo Alonso
GNN
21
6
0
18 Dec 2023
Ad-Rec: Advanced Feature Interactions to Address Covariate-Shifts in Recommendation Networks
Muhammad Adnan
Yassaman Ebrahimzadeh Maboud
Divyat Mahajan
Prashant J. Nair
27
3
0
28 Aug 2023
Pareto-Secure Machine Learning (PSML): Fingerprinting and Securing Inference Serving Systems
Debopam Sanyal
Jui-Tse Hung
Manavi Agrawal
Prahlad Jasti
Shahab Nikkhoo
S. Jha
Tianhao Wang
Sibin Mohan
Alexey Tumanov
36
0
0
03 Jul 2023
Mem-Rec: Memory Efficient Recommendation System using Alternative Representation
Gopu Krishna Jha
Anthony Thomas
Nilesh Jain
Sameh Gobriel
Tajana Rosing
Ravi Iyer
40
2
0
12 May 2023
KAIROS: Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous Cloud Resources
Baolin Li
S. Samsi
V. Gadepally
Devesh Tiwari
19
11
0
12 Oct 2022
DreamShard: Generalizable Embedding Table Placement for Recommender Systems
Daochen Zha
Louis Feng
Qiaoyu Tan
Zirui Liu
Kwei-Herng Lai
Bhargav Bhushanam
Yuandong Tian
A. Kejariwal
Xia Hu
LMTD
OffRL
15
28
0
05 Oct 2022
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
21
20
0
03 Sep 2022
RIBBON: Cost-Effective and QoS-Aware Deep Learning Model Inference using a Diverse Pool of Cloud Computing Instances
Baolin Li
Rohan Basu Roy
Tirthak Patel
V. Gadepally
K. Gettings
Devesh Tiwari
24
25
0
23 Jul 2022
Low-latency Mini-batch GNN Inference on CPU-FPGA Heterogeneous Platform
Bingyi Zhang
Hanqing Zeng
Viktor Prasanna
GNN
24
12
0
17 Jun 2022
Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity
Kiwan Maeng
Haiyu Lu
Luca Melis
John Nguyen
Michael G. Rabbat
Carole-Jean Wu
FedML
29
31
0
30 May 2022
Training Personalized Recommendation Systems from (GPU) Scratch: Look Forward not Backwards
Youngeun Kwon
Minsoo Rhu
16
27
0
10 May 2022
Learning to Collide: Recommendation System Model Compression with Learned Hash Functions
Benjamin Ghaemmaghami
Mustafa Ozdal
Rakesh Komuravelli
D. Korchev
Dheevatsa Mudigere
Krishnakumar Nair
Maxim Naumov
18
6
0
28 Mar 2022
Learning Compressed Embeddings for On-Device Inference
Niketan Pansare
J. Katukuri
Aditya Arora
F. Cipollone
R. Shaik
Noyan Tokgozoglu
Chandru Venkataraman
24
14
0
18 Mar 2022
Hercules: Heterogeneity-Aware Inference Serving for At-Scale Personalized Recommendation
Liu Ke
Udit Gupta
Mark Hempstead
Carole-Jean Wu
Hsien-Hsin S. Lee
Xuan Zhang
19
21
0
14 Mar 2022
BagPipe: Accelerating Deep Recommendation Model Training
Saurabh Agarwal
Chengpo Yan
Ziyi Zhang
Shivaram Venkataraman
18
17
0
24 Feb 2022
HeterPS: Distributed Deep Learning With Reinforcement Learning Based Scheduling in Heterogeneous Environments
Ji Liu
Zhihua Wu
Dianhai Yu
Yanjun Ma
Danlei Feng
Minxu Zhang
Xinxuan Wu
Xuefeng Yao
Dejing Dou
11
43
0
20 Nov 2021
Differentiable NAS Framework and Application to Ads CTR Prediction
Ravi Krishna
Aravind Kalaiah
Bichen Wu
Maxim Naumov
Dheevatsa Mudigere
M. Smelyanskiy
Kurt Keutzer
20
8
0
25 Oct 2021
Supporting Massive DLRM Inference Through Software Defined Memory
E. K. Ardestani
Changkyu Kim
Seung Jae Lee
Luoshang Pan
Valmiki Rampersad
...
Krishnakumar Nair
Maxim Naumov
Christopher Peterson
M. Smelyanskiy
Vijay Rao
BDL
31
20
0
21 Oct 2021
Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training
Mark Zhao
Niket Agarwal
Aarti Basant
B. Gedik
Satadru Pan
...
Kevin Wilfong
Harsha Rastogi
Carole-Jean Wu
Christos Kozyrakis
Parikshit Pol
GNN
15
70
0
20 Aug 2021
Random Offset Block Embedding Array (ROBE) for CriteoTB Benchmark MLPerf DLRM Model : 1000
×
\times
×
Compression and 3.1
×
\times
×
Faster Inference
Aditya Desai
Li Chou
Anshumali Shrivastava
AI4CE
20
6
0
04 Aug 2021
Post-Training Sparsity-Aware Quantization
Gil Shomron
F. Gabbay
Samer Kurzum
U. Weiser
MQ
31
33
0
23 May 2021
DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks
Geraldo F. Oliveira
Juan Gómez Luna
Lois Orosa
Saugata Ghose
Nandita Vijaykumar
Ivan Fernandez
Mohammad Sadrosadati
O. Mutlu
28
82
0
08 May 2021
CoSA: Scheduling by Constrained Optimization for Spatial Accelerators
Qijing Huang
Minwoo Kang
Grace Dinh
Thomas Norell
Aravind Kalaiah
J. Demmel
J. Wawrzynek
Y. Shao
15
105
0
05 May 2021
Faa
T
:
A
T
r
a
n
s
p
a
r
e
n
t
A
u
t
o
−
S
c
a
l
i
n
g
C
a
c
h
e
f
o
r
S
e
r
v
e
r
l
e
s
s
A
p
p
l
i
c
a
t
i
o
n
s
T: A Transparent Auto-Scaling Cache for Serverless Applications
T
:
A
T
r
an
s
p
a
re
n
t
A
u
t
o
−
S
c
a
l
in
g
C
a
c
h
e
f
or
S
er
v
er
l
ess
A
ppl
i
c
a
t
i
o
n
s
Francisco Romero
G. Chaudhry
Íñigo Goiri
Pragna Gopa
Paul Batum
N. Yadwadkar
Rodrigo Fonseca
Christos Kozyrakis
Ricardo Bianchini
58
111
0
28 Apr 2021
Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training
Youngeun Kwon
Yunjae Lee
Minsoo Rhu
19
39
0
25 Oct 2020
Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems
Caojin Zhang
Yicun Liu
Yuanpu Xie
S. Ktena
Alykhan Tejani
...
Suvadip Paul
Ikuhiro Ihara
P. Upadhyaya
Ferenc Huszár
Wenzhe Shi
26
53
0
28 Jul 2020
Optimizing Deep Learning Recommender Systems' Training On CPU Cluster Architectures
Dhiraj D. Kalamkar
E. Georganas
S. Srinivasan
Jianping Chen
Mikhail Shiryaev
A. Heinecke
48
47
0
10 May 2020
A Social Search Model for Large Scale Social Networks
Yunzhong He
Wenyuan Li
Liangxing Chen
Gabriel Forgues
Xunlong Gui
Sui Liang
Bo Hou
GNN
21
2
0
09 May 2020
DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference
Udit Gupta
Samuel Hsia
V. Saraph
Xiaodong Wang
Brandon Reagen
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
Carole-Jean Wu
GNN
25
188
0
08 Jan 2020
RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing
Liu Ke
Udit Gupta
Carole-Jean Wu
B. Cho
Mark Hempstead
...
Dheevatsa Mudigere
Maxim Naumov
Martin D. Schatz
M. Smelyanskiy
Xiaodong Wang
41
212
0
30 Dec 2019
SMASH: Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations
Konstantinos Kanellopoulos
Nandita Vijaykumar
Christina Giannoula
Roknoddin Azizi
Skanda Koppula
Nika Mansouri-Ghiasi
Taha Shahroodi
Juan Gómez Luna
O. Mutlu
13
79
0
23 Oct 2019
1