ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03292
  4. Cited By
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset

On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset

7 June 2019
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
    OOD
    DRL
ArXivPDFHTML

Papers citing "On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset"

32 / 32 papers shown
Title
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Negate or Embrace: On How Misalignment Shapes Multimodal Representation Learning
Yichao Cai
Yuhang Liu
Erdun Gao
T. Jiang
Zhen Zhang
Anton van den Hengel
J. Shi
55
0
0
14 Apr 2025
DRESS: Disentangled Representation-based Self-Supervised Meta-Learning for Diverse Tasks
Wei Cui
Tongzi Wu
Jesse C. Cresswell
Yi Sui
Keyvan Golestan
60
0
0
12 Mar 2025
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
70
0
0
07 Feb 2025
Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning
Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning
Geri Skenderi
Luigi Capogrosso
Andrea Toaiari
Matteo Denitto
Franco Fummi
Simone Melzi
Marco Cristani
OOD
21
0
0
13 Oct 2023
Disentanglement Learning via Topology
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
50
2
0
24 Aug 2023
Pix2Repair: Implicit Shape Restoration from Images
Pix2Repair: Implicit Shape Restoration from Images
Xinchao Song
N. Lamb
Sean Banerjee
N. Banerjee
3DV
24
0
0
29 May 2023
Vector-based Representation is the Key: A Study on Disentanglement and
  Compositional Generalization
Vector-based Representation is the Key: A Study on Disentanglement and Compositional Generalization
Tao Yang
Yuwang Wang
Cuiling Lan
Yan Lu
Nanning Zheng
OCL
CoGe
DRL
24
7
0
29 May 2023
Differentiable Random Partition Models
Differentiable Random Partition Models
Thomas M. Sutter
Alain Ryser
Joram Liebeskind
Julia E. Vogt
39
3
0
26 May 2023
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Matej Zečević
Moritz Willig
D. Dhami
Kristian Kersting
13
0
0
23 Dec 2022
Finding Differences Between Transformers and ConvNets Using
  Counterfactual Simulation Testing
Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing
Nataniel Ruiz
Sarah Adel Bargal
Cihang Xie
Kate Saenko
Stan Sclaroff
ViT
21
5
0
29 Nov 2022
The Robustness Limits of SoTA Vision Models to Natural Variation
The Robustness Limits of SoTA Vision Models to Natural Variation
Mark Ibrahim
Q. Garrido
Ari S. Morcos
Diane Bouchacourt
VLM
29
16
0
24 Oct 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
19
4
0
15 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling
  Known and Unknown Nuisance Factors
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
11
1
0
15 Sep 2022
When are Post-hoc Conceptual Explanations Identifiable?
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
50
10
0
28 Jun 2022
Weakly Supervised Representation Learning with Sparse Perturbations
Weakly Supervised Representation Learning with Sparse Perturbations
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
SSL
30
58
0
02 Jun 2022
Learning Group Importance using the Differentiable Hypergeometric
  Distribution
Learning Group Importance using the Differentiable Hypergeometric Distribution
Thomas M. Sutter
Laura Manduchi
Alain Ryser
Julia E. Vogt
36
7
0
03 Mar 2022
Reinforcement Learning in Practice: Opportunities and Challenges
Reinforcement Learning in Practice: Opportunities and Challenges
Yuxi Li
OffRL
34
9
0
23 Feb 2022
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
18
21
0
10 Dec 2021
Latent Transformations via NeuralODEs for GAN-based Image Editing
Latent Transformations via NeuralODEs for GAN-based Image Editing
Valentin Khrulkov
L. Mirvakhabova
Ivan V. Oseledets
Artem Babenko
24
14
0
29 Nov 2021
X-model: Improving Data Efficiency in Deep Learning with A Minimax Model
X-model: Improving Data Efficiency in Deep Learning with A Minimax Model
Ximei Wang
Xinyang Chen
Jianmin Wang
Mingsheng Long
19
1
0
09 Oct 2021
Relating Graph Neural Networks to Structural Causal Models
Relating Graph Neural Networks to Structural Causal Models
Matej Zečević
D. Dhami
Petar Velickovic
Kristian Kersting
AI4CE
CML
55
53
0
09 Sep 2021
Fair Representation: Guaranteeing Approximate Multiple Group Fairness
  for Unknown Tasks
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
22
20
0
01 Sep 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
32
296
0
03 Mar 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
236
207
0
17 Feb 2021
Mutual Information Based Method for Unsupervised Disentanglement of
  Video Representation
Mutual Information Based Method for Unsupervised Disentanglement of Video Representation
Aditya Sreekar
Ujjwal Tiwari
A. Namboodiri
DRL
11
4
0
17 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
22
80
0
27 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
20
4
0
05 Oct 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
16
20
0
28 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
24
132
0
21 Jul 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
38
1,926
0
11 Apr 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
84
72
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
173
313
0
07 Feb 2020
1