ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03329
  4. Cited By
Sparse Variational Inference: Bayesian Coresets from Scratch
v1v2 (latest)

Sparse Variational Inference: Bayesian Coresets from Scratch

7 June 2019
Trevor Campbell
Boyan Beronov
ArXiv (abs)PDFHTML

Papers citing "Sparse Variational Inference: Bayesian Coresets from Scratch"

11 / 11 papers shown
Title
Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG
Tuning-Free Coreset Markov Chain Monte Carlo via Hot DoG
Naitong Chen
Jonathan H. Huggins
Trevor Campbell
65
0
0
24 Oct 2024
Black-box Coreset Variational Inference
Black-box Coreset Variational Inference
Dionysis Manousakas
H. Ritter
Theofanis Karaletsos
BDL
56
4
0
04 Nov 2022
A Benchmark and Empirical Analysis for Replay Strategies in Continual
  Learning
A Benchmark and Empirical Analysis for Replay Strategies in Continual Learning
Qihan Yang
Fan Feng
Rosa H. M. Chan
108
9
0
04 Aug 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
73
20
0
09 Jun 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
85
14
0
11 Mar 2022
A Novel Sequential Coreset Method for Gradient Descent Algorithms
A Novel Sequential Coreset Method for Gradient Descent Algorithms
Jiawei Huang
Ru Huang
Wenjie Liu
N. Freris
Huihua Ding
95
16
0
05 Dec 2021
GCR: Gradient Coreset Based Replay Buffer Selection For Continual
  Learning
GCR: Gradient Coreset Based Replay Buffer Selection For Continual Learning
Rishabh Tiwari
Krishnateja Killamsetty
Rishabh K. Iyer
Pradeep Shenoy
BDLCLL
75
140
0
18 Nov 2021
How To Train Your Program: a Probabilistic Programming Pattern for
  Bayesian Learning From Data
How To Train Your Program: a Probabilistic Programming Pattern for Bayesian Learning From Data
David Tolpin
48
0
0
08 May 2021
Uncovering Coresets for Classification With Multi-Objective Evolutionary
  Algorithms
Uncovering Coresets for Classification With Multi-Objective Evolutionary Algorithms
Pietro Barbiero
Giovanni Squillero
Alberto Tonda
42
3
0
20 Feb 2020
Spectral Subsampling MCMC for Stationary Time Series
Spectral Subsampling MCMC for Stationary Time Series
R. Salomone
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
AI4TS
78
15
0
30 Oct 2019
Large Scale Clustering with Variational EM for Gaussian Mixture Models
Large Scale Clustering with Variational EM for Gaussian Mixture Models
F. Hirschberger
D. Forster
Jörg Lücke
VLM
86
13
0
01 Oct 2018
1