Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.04214
Cited By
v1
v2
v3 (latest)
Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective
10 June 2019
Kaidi Xu
Hongge Chen
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Mingyi Hong
Xue Lin
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective"
50 / 208 papers shown
Title
Adversarial Inter-Group Link Injection Degrades the Fairness of Graph Neural Networks
Hussain Hussain
Meng Cao
Sandipan Sikdar
D. Helic
Elisabeth Lex
M. Strohmaier
Roman Kern
109
14
0
13 Sep 2022
Structure-Preserving Graph Representation Learning
Ruiyi Fang
Liangjiang Wen
Zhao Kang
Jianzhuang Liu
104
23
0
02 Sep 2022
What Does the Gradient Tell When Attacking the Graph Structure
Zihan Liu
Ge Wang
Yun Luo
Stan Z. Li
AAML
50
2
0
26 Aug 2022
ARIEL: Adversarial Graph Contrastive Learning
Shengyu Feng
Baoyu Jing
Yada Zhu
Hanghang Tong
87
7
0
15 Aug 2022
Revisiting Adversarial Attacks on Graph Neural Networks for Graph Classification
Xin Eric Wang
Heng Chang
Beini Xie
Tian Bian
Shiji Zhou
Daixin Wang
Qing Cui
Wenwu Zhu
AAML
84
10
0
13 Aug 2022
Are Gradients on Graph Structure Reliable in Gray-box Attacks?
Zihan Liu
Yun Luo
Lirong Wu
Siyuan Li
Zicheng Liu
Stan Z. Li
AAML
107
23
0
07 Aug 2022
Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN
Kuan Li
Yang Liu
Xiang Ao
Jianfeng Chi
Jinghua Feng
Hao Yang
Qing He
AAML
107
66
0
30 Jun 2022
Transferable Graph Backdoor Attack
Shuiqiao Yang
Bao Gia Doan
Paul Montague
O. Vel
Tamas Abraham
S. Çamtepe
Damith C. Ranasinghe
S. Kanhere
AAML
96
39
0
21 Jun 2022
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
Runlin Lei
Zhen Wang
Yaliang Li
Bolin Ding
Zhewei Wei
AAML
98
45
0
27 May 2022
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
Bingzhe Wu
Jintang Li
Junchi Yu
Yatao Bian
Hengtong Zhang
...
Guangyu Sun
Peng Cui
Zibin Zheng
Zhe Liu
P. Zhao
OOD
111
28
0
20 May 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Lizhen Qu
Shirui Pan
Hanghang Tong
Jian Pei
139
110
0
16 May 2022
Bandits for Structure Perturbation-based Black-box Attacks to Graph Neural Networks with Theoretical Guarantees
Binghui Wang
Youqin Li
Pan Zhou
AAML
76
14
0
07 May 2022
Detecting Topology Attacks against Graph Neural Networks
Senrong Xu
Yuan Yao
Liangyue Li
Wei Yang
F. Xu
Hanghang Tong
84
3
0
21 Apr 2022
DropMessage: Unifying Random Dropping for Graph Neural Networks
Taoran Fang
Zhiqing Xiao
Chunping Wang
Jiarong Xu
Xuan Yang
Yang Yang
54
53
0
21 Apr 2022
GUARD: Graph Universal Adversarial Defense
Jintang Li
Jie Liao
Ruofan Wu
Liang Chen
Zibin Zheng
Jiawang Dan
Changhua Meng
Weiqiang Wang
AAML
76
8
0
20 Apr 2022
A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability
Enyan Dai
Tianxiang Zhao
Huaisheng Zhu
Jun Xu
Zhimeng Guo
Hui Liu
Jiliang Tang
Suhang Wang
109
144
0
18 Apr 2022
Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges
S. Thais
P. Calafiura
G. Chachamis
G. Dezoort
Javier Mauricio Duarte
S. Ganguly
Michael Kagan
D. Murnane
Mark S. Neubauer
K. Terao
PINN
AI4CE
121
31
0
23 Mar 2022
Exploring High-Order Structure for Robust Graph Structure Learning
Guangqian Yang
Yibing Zhan
Jinlong Li
Baosheng Yu
Liu Liu
Fengxiang He
AAML
101
0
0
22 Mar 2022
Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with Heterophily
Jie Chen
Shouzhen Chen
Junbin Gao
Zengfeng Huang
Junping Zhang
Jian Pu
105
27
0
19 Mar 2022
Graph Convolutional Neural Networks Sensitivity under Probabilistic Error Model
Xinjue Wang
Esa Ollila
S. Vorobyov
AAML
104
3
0
15 Mar 2022
Model-Agnostic Augmentation for Accurate Graph Classification
Jaemin Yoo
Sooyeon Shim
U. Kang
GNN
87
30
0
21 Feb 2022
Black-box Node Injection Attack for Graph Neural Networks
Mingxuan Ju
Yujie Fan
Yanfang Ye
Liang Zhao
AAML
118
2
0
18 Feb 2022
Graph Data Augmentation for Graph Machine Learning: A Survey
Tong Zhao
Wei Jin
Yozen Liu
Yingheng Wang
Gang Liu
Stephan Günnemann
Neil Shah
Meng Jiang
OOD
130
83
0
17 Feb 2022
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability
Yongqiang Chen
Han Yang
Yonggang Zhang
Kaili Ma
Tongliang Liu
Bo Han
James Cheng
AAML
122
86
0
16 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
103
16
0
15 Feb 2022
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Jintang Li
Bingzhe Wu
Chengbin Hou
Guoji Fu
Yatao Bian
Liang Chen
Junzhou Huang
Zibin Zheng
OOD
AAML
89
6
0
15 Feb 2022
Adversarial Graph Contrastive Learning with Information Regularization
Shengyu Feng
Baoyu Jing
Yada Zhu
Hanghang Tong
50
66
0
14 Feb 2022
Learning Robust Representation through Graph Adversarial Contrastive Learning
Jiayan Guo
Shangyang Li
Yue Zhao
Fei Huang
78
6
0
31 Jan 2022
Toward Enhanced Robustness in Unsupervised Graph Representation Learning: A Graph Information Bottleneck Perspective
Jihong Wang
Minnan Luo
Jundong Li
Ziqi Liu
Jun Zhou
Qinghua Zheng
AAML
51
5
0
21 Jan 2022
Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation
Sixiao Zhang
Hongxu Chen
Xiangguo Sun
Yicong Li
Guandong Xu
AAML
SSL
109
43
0
20 Jan 2022
Neighboring Backdoor Attacks on Graph Convolutional Network
Liang Chen
Qibiao Peng
Jintang Li
Yang Liu
Jiawei Chen
Yong Li
Zibin Zheng
GNN
AAML
78
11
0
17 Jan 2022
Task and Model Agnostic Adversarial Attack on Graph Neural Networks
Kartik Sharma
S. Verma
Sourav Medya
Arnab Bhattacharya
Sayan Ranu
AAML
64
10
0
25 Dec 2021
Model Stealing Attacks Against Inductive Graph Neural Networks
Yun Shen
Xinlei He
Yufei Han
Yang Zhang
87
66
0
15 Dec 2021
Graph Structural Attack by Perturbing Spectral Distance
Lu Lin
Ethan Blaser
Hongning Wang
AAML
30
31
0
01 Nov 2021
CAP: Co-Adversarial Perturbation on Weights and Features for Improving Generalization of Graph Neural Networks
Hao Xue
Kaixiong Zhou
Tianlong Chen
Kai Guo
Helen Zhou
Yi Chang
Xin Wang
AAML
76
15
0
28 Oct 2021
Robustness of Graph Neural Networks at Scale
Simon Geisler
Tobias Schmidt
Hakan cSirin
Daniel Zügner
Aleksandar Bojchevski
Stephan Günnemann
AAML
109
135
0
26 Oct 2021
Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness
Simon Geisler
Johanna Sommer
Jan Schuchardt
Aleksandar Bojchevski
Stephan Günnemann
AAML
60
39
0
21 Oct 2021
Surrogate Representation Learning with Isometric Mapping for Gray-box Graph Adversarial Attacks
Zihan Liu
Yun Luo
Z. Zang
Stan Z. Li
AAML
85
15
0
20 Oct 2021
Inference Attacks Against Graph Neural Networks
Zhikun Zhang
Min Chen
Michael Backes
Yun Shen
Yang Zhang
MIACV
AAML
GNN
83
50
0
06 Oct 2021
CoG: a Two-View Co-training Framework for Defending Adversarial Attacks on Graph
Xugang Wu
Huijun Wu
Xu Zhou
Kai Lu
AAML
16
0
0
12 Sep 2021
A Hard Label Black-box Adversarial Attack Against Graph Neural Networks
Jiaming Mu
Binghui Wang
Qi Li
Kun Sun
Mingwei Xu
Zhuotao Liu
AAML
68
37
0
21 Aug 2021
Jointly Attacking Graph Neural Network and its Explanations
Wenqi Fan
Wei Jin
Xiaorui Liu
Han Xu
Xianfeng Tang
Suhang Wang
Qing Li
Jiliang Tang
Jianping Wang
Charu C. Aggarwal
AAML
87
29
0
07 Aug 2021
Structack: Structure-based Adversarial Attacks on Graph Neural Networks
Hussain Hussain
Tomislav Duricic
Elisabeth Lex
D. Helic
M. Strohmaier
Roman Kern
AAML
GNN
87
13
0
23 Jul 2021
Robust Counterfactual Explanations on Graph Neural Networks
Mohit Bajaj
Lingyang Chu
Zihui Xue
J. Pei
Lanjun Wang
P. C. Lam
Yong Zhang
OOD
166
100
0
08 Jul 2021
On Generalization of Graph Autoencoders with Adversarial Training
Tianjin Huang
Yulong Pei
Vlado Menkovski
Mykola Pechenizkiy
GNN
119
6
0
06 Jul 2021
Adversarial Robustness of Probabilistic Network Embedding for Link Prediction
Xi Chen
Bo Kang
Jefrey Lijffijt
T. D. Bie
AAML
49
2
0
05 Jul 2021
NetFense: Adversarial Defenses against Privacy Attacks on Neural Networks for Graph Data
I-Chung Hsieh
Cheng-Te Li
AAML
70
24
0
22 Jun 2021
Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem
Jiaqi Ma
Junwei Deng
Qiaozhu Mei
AAML
GNN
67
33
0
21 Jun 2021
How does Heterophily Impact the Robustness of Graph Neural Networks? Theoretical Connections and Practical Implications
Jiong Zhu
Junchen Jin
Donald Loveland
Michael T. Schaub
Danai Koutra
AAML
108
37
0
14 Jun 2021
GraphMI: Extracting Private Graph Data from Graph Neural Networks
Zaixi Zhang
Qi Liu
Zhenya Huang
Hao Wang
Chengqiang Lu
Chuanren Liu
Enhong Chen
71
72
0
05 Jun 2021
Previous
1
2
3
4
5
Next