ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04233
  4. Cited By
Using generative modelling to produce varied intonation for speech
  synthesis

Using generative modelling to produce varied intonation for speech synthesis

10 June 2019
Zack Hodari
O. Watts
Simon King
ArXivPDFHTML

Papers citing "Using generative modelling to produce varied intonation for speech synthesis"

15 / 15 papers shown
Title
Enhancing Zero-Shot Multi-Speaker TTS with Negated Speaker
  Representations
Enhancing Zero-Shot Multi-Speaker TTS with Negated Speaker Representations
Yejin Jeon
Yunsu Kim
Gary Geunbae Lee
27
1
0
04 Jan 2024
Comparing normalizing flows and diffusion models for prosody and
  acoustic modelling in text-to-speech
Comparing normalizing flows and diffusion models for prosody and acoustic modelling in text-to-speech
Guangyan Zhang
Thomas Merritt
M. Ribeiro
Biel Tura Vecino
K. Yanagisawa
...
Ammar Abbas
Piotr Bilinski
Roberto Barra-Chicote
Daniel Korzekwa
Jaime Lorenzo-Trueba
DiffM
31
3
0
31 Jul 2023
The Ethical Implications of Generative Audio Models: A Systematic
  Literature Review
The Ethical Implications of Generative Audio Models: A Systematic Literature Review
J. Barnett
14
25
0
07 Jul 2023
Controllable Prosody Generation With Partial Inputs
Controllable Prosody Generation With Partial Inputs
Dan-Andrei Iliescu
D. Mohan
Tian Huey Teh
Zack Hodari
14
1
0
14 Mar 2023
The Sillwood Technologies System for the VoiceMOS Challenge 2022
The Sillwood Technologies System for the VoiceMOS Challenge 2022
Jiameng Gao
18
0
0
08 Apr 2022
Discrete Acoustic Space for an Efficient Sampling in Neural
  Text-To-Speech
Discrete Acoustic Space for an Efficient Sampling in Neural Text-To-Speech
Mu-Wei Li
Jonas Rohnke
A. Bonafonte
Mateusz Lajszczak
Trevor Wood
DRL
17
2
0
24 Oct 2021
Applying the Information Bottleneck Principle to Prosodic Representation
  Learning
Applying the Information Bottleneck Principle to Prosodic Representation Learning
Guangyan Zhang
Ying Qin
Daxin Tan
Tan Lee
14
4
0
05 Aug 2021
Location, Location: Enhancing the Evaluation of Text-to-Speech Synthesis
  Using the Rapid Prosody Transcription Paradigm
Location, Location: Enhancing the Evaluation of Text-to-Speech Synthesis Using the Rapid Prosody Transcription Paradigm
Elijah Gutierrez
Pilar Oplustil Gallegos
Catherine Lai
11
3
0
06 Jul 2021
Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis
Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis
D. Mohan
Qinmin Hu
Tian Huey Teh
Alexandra Torresquintero
C. Wallis
Marlene Staib
Lorenzo Foglianti
Jiameng Gao
Simon King
18
16
0
15 Jun 2021
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech
  Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech
Keon Lee
Kyumin Park
Daeyoung Kim
11
30
0
17 Mar 2021
Parallel WaveNet conditioned on VAE latent vectors
Parallel WaveNet conditioned on VAE latent vectors
Jonas Rohnke
Thomas Merritt
Jaime Lorenzo-Trueba
Adam Gabry's
Vatsal Aggarwal
Alexis Moinet
Roberto Barra-Chicote
12
3
0
17 Dec 2020
Controllable Neural Prosody Synthesis
Controllable Neural Prosody Synthesis
Max Morrison
Zeyu Jin
Justin Salamon
Nicholas J. Bryan
G. J. Mysore
6
20
0
07 Aug 2020
Expressive TTS Training with Frame and Style Reconstruction Loss
Expressive TTS Training with Frame and Style Reconstruction Loss
Rui Liu
Berrak Sisman
Guanglai Gao
Haizhou Li
9
73
0
04 Aug 2020
Perception of prosodic variation for speech synthesis using an
  unsupervised discrete representation of F0
Perception of prosodic variation for speech synthesis using an unsupervised discrete representation of F0
Zack Hodari
Catherine Lai
Simon King
6
13
0
14 Mar 2020
Dynamic Prosody Generation for Speech Synthesis using Linguistics-Driven
  Acoustic Embedding Selection
Dynamic Prosody Generation for Speech Synthesis using Linguistics-Driven Acoustic Embedding Selection
Shubhi Tyagi
M. Nicolis
Jonas Rohnke
Thomas Drugman
Jaime Lorenzo-Trueba
16
32
0
02 Dec 2019
1