ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04233
  4. Cited By
Using generative modelling to produce varied intonation for speech
  synthesis
v1v2 (latest)

Using generative modelling to produce varied intonation for speech synthesis

Speech Synthesis Workshop (SSW), 2019
10 June 2019
Zack Hodari
O. Watts
Simon King
ArXiv (abs)PDFHTML

Papers citing "Using generative modelling to produce varied intonation for speech synthesis"

15 / 15 papers shown
Enhancing Zero-Shot Multi-Speaker TTS with Negated Speaker
  Representations
Enhancing Zero-Shot Multi-Speaker TTS with Negated Speaker RepresentationsAAAI Conference on Artificial Intelligence (AAAI), 2024
Yejin Jeon
Yunsu Kim
Gary Geunbae Lee
211
5
0
04 Jan 2024
Comparing normalizing flows and diffusion models for prosody and
  acoustic modelling in text-to-speech
Comparing normalizing flows and diffusion models for prosody and acoustic modelling in text-to-speechInterspeech (Interspeech), 2023
Guangyan Zhang
Thomas Merritt
M. Ribeiro
Biel Tura Vecino
K. Yanagisawa
...
Ammar Abbas
Piotr Bilinski
Roberto Barra-Chicote
Daniel Korzekwa
Jaime Lorenzo-Trueba
DiffM
207
3
0
31 Jul 2023
The Ethical Implications of Generative Audio Models: A Systematic
  Literature Review
The Ethical Implications of Generative Audio Models: A Systematic Literature ReviewAAAI/ACM Conference on AI, Ethics, and Society (AIES), 2023
J. Barnett
251
47
0
07 Jul 2023
Controllable Prosody Generation With Partial Inputs
Controllable Prosody Generation With Partial InputsIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Dan-Andrei Iliescu
D. Mohan
Tian Huey Teh
Zack Hodari
169
2
0
14 Mar 2023
The Sillwood Technologies System for the VoiceMOS Challenge 2022
The Sillwood Technologies System for the VoiceMOS Challenge 2022
Jiameng Gao
167
0
0
08 Apr 2022
Discrete Acoustic Space for an Efficient Sampling in Neural
  Text-To-Speech
Discrete Acoustic Space for an Efficient Sampling in Neural Text-To-SpeechIberSPEECH Conference (IberSPEECH), 2021
Mu Li
Jonas Rohnke
Antonio Bonafonte
Mateusz Lajszczak
Trevor Wood
DRL
279
3
0
24 Oct 2021
Applying the Information Bottleneck Principle to Prosodic Representation
  Learning
Applying the Information Bottleneck Principle to Prosodic Representation LearningInterspeech (Interspeech), 2021
Guangyan Zhang
Ying Qin
Daxin Tan
Tan Lee
195
5
0
05 Aug 2021
Location, Location: Enhancing the Evaluation of Text-to-Speech Synthesis
  Using the Rapid Prosody Transcription Paradigm
Location, Location: Enhancing the Evaluation of Text-to-Speech Synthesis Using the Rapid Prosody Transcription Paradigm
Elijah Gutierrez
Pilar Oplustil Gallegos
Catherine Lai
119
8
0
06 Jul 2021
Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis
Ctrl-P: Temporal Control of Prosodic Variation for Speech Synthesis
D. Mohan
Qinmin Hu
Tian Huey Teh
Alexandra Torresquintero
C. Wallis
Marlene Staib
Lorenzo Foglianti
Jiameng Gao
Simon King
129
20
0
15 Jun 2021
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech
  Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to SpeechInterspeech (Interspeech), 2021
Keon Lee
Kyumin Park
Daeyoung Kim
269
32
0
17 Mar 2021
Parallel WaveNet conditioned on VAE latent vectors
Parallel WaveNet conditioned on VAE latent vectors
Jonas Rohnke
Thomas Merritt
Jaime Lorenzo-Trueba
Adam Gabry's
Vatsal Aggarwal
Alexis Moinet
Roberto Barra-Chicote
130
3
0
17 Dec 2020
Controllable Neural Prosody Synthesis
Controllable Neural Prosody SynthesisInterspeech (Interspeech), 2020
Max Morrison
Zeyu Jin
Justin Salamon
Nicholas J. Bryan
G. J. Mysore
200
23
0
07 Aug 2020
Expressive TTS Training with Frame and Style Reconstruction Loss
Expressive TTS Training with Frame and Style Reconstruction Loss
Rui Liu
Berrak Sisman
Guanglai Gao
Haizhou Li
243
80
0
04 Aug 2020
Perception of prosodic variation for speech synthesis using an
  unsupervised discrete representation of F0
Perception of prosodic variation for speech synthesis using an unsupervised discrete representation of F0Proceedings of the International Conference on Speech Prosody (Speech Prosody), 2020
Zack Hodari
Catherine Lai
Simon King
137
15
0
14 Mar 2020
Dynamic Prosody Generation for Speech Synthesis using Linguistics-Driven
  Acoustic Embedding Selection
Dynamic Prosody Generation for Speech Synthesis using Linguistics-Driven Acoustic Embedding SelectionInterspeech (Interspeech), 2019
Shubhi Tyagi
M. Nicolis
Jonas Rohnke
Thomas Drugman
Jaime Lorenzo-Trueba
207
32
0
02 Dec 2019
1