Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05243
Cited By
When to use parametric models in reinforcement learning?
12 June 2019
H. V. Hasselt
Matteo Hessel
John Aslanides
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When to use parametric models in reinforcement learning?"
50 / 124 papers shown
Title
Stabilizing Off-Policy Deep Reinforcement Learning from Pixels
Edoardo Cetin
Philip J. Ball
Steve Roberts
Oya Celiktutan
38
36
0
03 Jul 2022
Value-Consistent Representation Learning for Data-Efficient Reinforcement Learning
Yang Yue
Bingyi Kang
Zhongwen Xu
Gao Huang
Shuicheng Yan
OffRL
38
13
0
25 Jun 2022
Does Self-supervised Learning Really Improve Reinforcement Learning from Pixels?
Xiang Li
Jinghuan Shang
Srijan Das
Michael S. Ryoo
SSL
40
31
0
10 Jun 2022
A Relational Intervention Approach for Unsupervised Dynamics Generalization in Model-Based Reinforcement Learning
J. Guo
Biwei Huang
Dacheng Tao
15
20
0
09 Jun 2022
Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models
Yang Shu
Zhangjie Cao
Ziyang Zhang
Jianmin Wang
Mingsheng Long
22
4
0
08 Jun 2022
On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning
Mandi Zhao
Pieter Abbeel
Stephen James
OffRL
31
33
0
07 Jun 2022
Goal-Space Planning with Subgoal Models
Chun-Ping Lo
Kevin Roice
Parham Mohammad Panahi
Scott M. Jordan
Adam White
Gábor Mihucz
Farzane Aminmansour
Martha White
29
5
0
06 Jun 2022
Graph Backup: Data Efficient Backup Exploiting Markovian Transitions
Zhengyao Jiang
Tianjun Zhang
Robert Kirk
Tim Rocktaschel
Edward Grefenstette
OffRL
10
2
0
31 May 2022
Frustratingly Easy Regularization on Representation Can Boost Deep Reinforcement Learning
Qiang He
Huangyuan Su
Jieyu Zhang
Xinwen Hou
OOD
OffRL
30
7
0
29 May 2022
Transformer with Memory Replay
R. Liu
Barzan Mozafari
OffRL
70
4
0
19 May 2022
The Primacy Bias in Deep Reinforcement Learning
Evgenii Nikishin
Max Schwarzer
P. DÓro
Pierre-Luc Bacon
Rameswar Panda
OnRL
96
182
0
16 May 2022
CCLF: A Contrastive-Curiosity-Driven Learning Framework for Sample-Efficient Reinforcement Learning
Chenyu Sun
Hangwei Qian
Chunyan Miao
OffRL
34
12
0
02 May 2022
Topological Experience Replay
Zhang-Wei Hong
Tao Chen
Yen-Chen Lin
Joni Pajarinen
Pulkit Agrawal
24
16
0
29 Mar 2022
Fast and Data Efficient Reinforcement Learning from Pixels via Non-Parametric Value Approximation
Alex Long
Alan Blair
H. V. Hoof
26
3
0
07 Mar 2022
Selective Credit Assignment
Veronica Chelu
Diana Borsa
Doina Precup
Hado van Hasselt
32
2
0
20 Feb 2022
Retrieval-Augmented Reinforcement Learning
Anirudh Goyal
A. Friesen
Andrea Banino
T. Weber
Nan Rosemary Ke
...
Michal Valko
Simon Osindero
Timothy Lillicrap
N. Heess
Charles Blundell
OffRL
32
53
0
17 Feb 2022
Influence-Augmented Local Simulators: A Scalable Solution for Fast Deep RL in Large Networked Systems
Miguel Suau
Jinke He
M. Spaan
F. Oliehoek
30
4
0
03 Feb 2022
Mask-based Latent Reconstruction for Reinforcement Learning
Tao Yu
Zhizheng Zhang
Cuiling Lan
Yan Lu
Zhibo Chen
24
44
0
28 Jan 2022
Programmatic Policy Extraction by Iterative Local Search
Rasmus Larsen
Mikkel N. Schmidt
13
0
0
18 Jan 2022
Fast and Data-Efficient Training of Rainbow: an Experimental Study on Atari
Dominik Schmidt
Thomas Schmied
OffRL
28
12
0
19 Nov 2021
Learning Representations for Pixel-based Control: What Matters and Why?
Manan Tomar
Utkarsh Aashu Mishra
Amy Zhang
Matthew E. Taylor
SSL
OffRL
30
24
0
15 Nov 2021
Improving Experience Replay through Modeling of Similar Transitions' Sets
Daniel Eugênio Neves
João Pedro Oliveira Batisteli
Eduardo Felipe Lopes
Lucila Ishitani
Zenilton K. G. Patrocínio
OffRL
21
1
0
12 Nov 2021
Mastering Atari Games with Limited Data
Weirui Ye
Shao-Wei Liu
Thanard Kurutach
Pieter Abbeel
Yang Gao
VLM
56
226
0
30 Oct 2021
The Efficiency Misnomer
Daoyuan Chen
Liuyi Yao
Dawei Gao
Ashish Vaswani
Yaliang Li
39
99
0
25 Oct 2021
Self-Consistent Models and Values
Roy Miles
Kate Baumli
Zita Marinho
Angelos Filos
Matteo Hessel
Hado van Hasselt
David Silver
38
8
0
25 Oct 2021
Evaluating model-based planning and planner amortization for continuous control
Arunkumar Byravan
Leonard Hasenclever
Piotr Trochim
M. Berk Mirza
Alessandro Davide Ialongo
...
Jost Tobias Springenberg
A. Abdolmaleki
N. Heess
J. Merel
Martin Riedmiller
55
17
0
07 Oct 2021
Offline Reinforcement Learning with Reverse Model-based Imagination
Jianhao Wang
Wenzhe Li
Haozhe Jiang
Guangxiang Zhu
Siyuan Li
Chongjie Zhang
OffRL
111
61
0
01 Oct 2021
Benchmarking the Spectrum of Agent Capabilities
Danijar Hafner
ELM
33
128
0
14 Sep 2021
APS: Active Pretraining with Successor Features
Hao Liu
Pieter Abbeel
50
119
0
31 Aug 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
61
639
0
30 Aug 2021
Learning Expected Emphatic Traces for Deep RL
Ray Jiang
Shangtong Zhang
Veronica Chelu
Adam White
Hado van Hasselt
OffRL
27
12
0
12 Jul 2021
Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learning
Muhammad Rizki Maulana
W. Lee
22
1
0
05 Jul 2021
Zoo-Tuning: Adaptive Transfer from a Zoo of Models
Yang Shu
Zhi Kou
Zhangjie Cao
Jianmin Wang
Mingsheng Long
29
44
0
29 Jun 2021
Pretraining Representations for Data-Efficient Reinforcement Learning
Max Schwarzer
Nitarshan Rajkumar
Michael Noukhovitch
Ankesh Anand
Laurent Charlin
Devon Hjelm
Philip Bachman
Aaron Courville
OffRL
47
114
0
09 Jun 2021
Vector Quantized Models for Planning
Sherjil Ozair
Yazhe Li
Ali Razavi
Ioannis Antonoglou
Aaron van den Oord
Oriol Vinyals
OffRL
24
49
0
08 Jun 2021
Learning Markov State Abstractions for Deep Reinforcement Learning
Cameron Allen
Neev Parikh
Omer Gottesman
George Konidaris
BDL
OffRL
42
36
0
08 Jun 2021
PlayVirtual: Augmenting Cycle-Consistent Virtual Trajectories for Reinforcement Learning
Tao Yu
Cuiling Lan
Wenjun Zeng
Mingxiao Feng
Zhizheng Zhang
Zhibo Chen
OffRL
25
46
0
08 Jun 2021
Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting
Eric Benhamou
David Saltiel
S. Tabachnik
Sui Kai Wong
François Chareyron
OOD
57
4
0
19 Apr 2021
Planning with Expectation Models for Control
Katya Kudashkina
Yi Wan
Abhishek Naik
R. Sutton
OffRL
30
0
0
17 Apr 2021
Muesli: Combining Improvements in Policy Optimization
Matteo Hessel
Ivo Danihelka
Fabio Viola
A. Guez
Simon Schmitt
Laurent Sifre
T. Weber
David Silver
H. V. Hasselt
24
66
0
13 Apr 2021
Model-free Policy Learning with Reward Gradients
Qingfeng Lan
Samuele Tosatto
Homayoon Farrahi
Rupam Mahmood
19
6
0
09 Mar 2021
Behavior From the Void: Unsupervised Active Pre-Training
Hao Liu
Pieter Abbeel
VLM
SSL
46
195
0
08 Mar 2021
Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings
Lili Chen
Kimin Lee
A. Srinivas
Pieter Abbeel
OffRL
24
11
0
04 Mar 2021
Return-Based Contrastive Representation Learning for Reinforcement Learning
Guoqing Liu
Chuheng Zhang
Li Zhao
Tao Qin
Jinhua Zhu
Jian Li
Nenghai Yu
Tie-Yan Liu
SSL
OffRL
19
47
0
22 Feb 2021
Q-Value Weighted Regression: Reinforcement Learning with Limited Data
Piotr Kozakowski
Lukasz Kaiser
Henryk Michalewski
Afroz Mohiuddin
Katarzyna Kañska
OffRL
30
5
0
12 Feb 2021
Measuring Progress in Deep Reinforcement Learning Sample Efficiency
Florian E. Dorner
25
12
0
09 Feb 2021
Model-Augmented Q-learning
Youngmin Oh
Jinwoo Shin
Eunho Yang
Sung Ju Hwang
OffRL
19
1
0
07 Feb 2021
On the role of planning in model-based deep reinforcement learning
Jessica B. Hamrick
A. Friesen
Feryal M. P. Behbahani
A. Guez
Fabio Viola
Sims Witherspoon
Thomas W. Anthony
Lars Buesing
Petar Velickovic
T. Weber
OffRL
30
65
0
08 Nov 2020
Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled Wireless Networks: A Tutorial
Amal Feriani
Ekram Hossain
40
237
0
06 Nov 2020
Implicit Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning
Aviral Kumar
Rishabh Agarwal
Dibya Ghosh
Sergey Levine
OffRL
22
118
0
27 Oct 2020
Previous
1
2
3
Next