Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.05271
Cited By
Does Learning Require Memorization? A Short Tale about a Long Tail
12 June 2019
Vitaly Feldman
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Does Learning Require Memorization? A Short Tale about a Long Tail"
50 / 104 papers shown
Title
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Y. Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
28
18
0
08 Dec 2022
CrossSplit: Mitigating Label Noise Memorization through Data Splitting
Jihye Kim
A. Baratin
Yan Zhang
Simon Lacoste-Julien
NoLa
18
7
0
03 Dec 2022
Prototypical Fine-tuning: Towards Robust Performance Under Varying Data Sizes
Yiqiao Jin
Xiting Wang
Y. Hao
Yizhou Sun
Xing Xie
35
11
0
24 Nov 2022
SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing
Jie Fu
Zhili Chen
Xinpeng Ling
19
0
0
14 Nov 2022
Finding Memo: Extractive Memorization in Constrained Sequence Generation Tasks
Vikas Raunak
Arul Menezes
30
13
0
24 Oct 2022
Improving Data Quality with Training Dynamics of Gradient Boosting Decision Trees
M. Ponti
L. Oliveira
Mathias Esteban
Valentina Garcia
J. Román
Luis Argerich
TDI
22
4
0
20 Oct 2022
Verifiable and Provably Secure Machine Unlearning
Thorsten Eisenhofer
Doreen Riepel
Varun Chandrasekaran
Esha Ghosh
O. Ohrimenko
Nicolas Papernot
AAML
MU
33
26
0
17 Oct 2022
Mitigating Unintended Memorization in Language Models via Alternating Teaching
Zhe Liu
Xuedong Zhang
Fuchun Peng
17
3
0
13 Oct 2022
Transformers generalize differently from information stored in context vs in weights
Stephanie C. Y. Chan
Ishita Dasgupta
Junkyung Kim
D. Kumaran
Andrew Kyle Lampinen
Felix Hill
104
45
0
11 Oct 2022
Understanding Transformer Memorization Recall Through Idioms
Adi Haviv
Ido Cohen
Jacob Gidron
R. Schuster
Yoav Goldberg
Mor Geva
26
48
0
07 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
37
27
0
20 Sep 2022
Data Provenance via Differential Auditing
Xin Mu
Ming Pang
Feida Zhu
6
1
0
04 Sep 2022
Data Isotopes for Data Provenance in DNNs
Emily Wenger
Xiuyu Li
Ben Y. Zhao
Vitaly Shmatikov
18
12
0
29 Aug 2022
SNAP: Efficient Extraction of Private Properties with Poisoning
Harsh Chaudhari
John Abascal
Alina Oprea
Matthew Jagielski
Florian Tramèr
Jonathan R. Ullman
MIACV
34
30
0
25 Aug 2022
Efficient Augmentation for Imbalanced Deep Learning
Damien Dablain
C. Bellinger
Bartosz Krawczyk
Nitesh V. Chawla
27
7
0
13 Jul 2022
Generalization-Memorization Machines
Zhen Wang
Y. Shao
14
6
0
08 Jul 2022
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
18
89
0
29 Jun 2022
The Privacy Onion Effect: Memorization is Relative
Nicholas Carlini
Matthew Jagielski
Chiyuan Zhang
Nicolas Papernot
Andreas Terzis
Florian Tramèr
PILM
MIACV
30
99
0
21 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
21
71
0
08 Jun 2022
Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models
Kushal Tirumala
Aram H. Markosyan
Luke Zettlemoyer
Armen Aghajanyan
TDI
23
185
0
22 May 2022
Provably Confidential Language Modelling
Xuandong Zhao
Lei Li
Yu-Xiang Wang
MU
14
15
0
04 May 2022
Memory Bounds for Continual Learning
Xi Chen
Christos H. Papadimitriou
Binghui Peng
CLL
LRM
27
22
0
22 Apr 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
30
106
0
31 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
15
15
0
25 Feb 2022
Deletion Inference, Reconstruction, and Compliance in Machine (Un)Learning
Ji Gao
Sanjam Garg
Mohammad Mahmoody
Prashant Nalini Vasudevan
MIACV
AAML
19
22
0
07 Feb 2022
Evaluating natural language processing models with generalization metrics that do not need access to any training or testing data
Yaoqing Yang
Ryan Theisen
Liam Hodgkinson
Joseph E. Gonzalez
Kannan Ramchandran
Charles H. Martin
Michael W. Mahoney
86
17
0
06 Feb 2022
Datamodels: Predicting Predictions from Training Data
Andrew Ilyas
Sung Min Park
Logan Engstrom
Guillaume Leclerc
A. Madry
TDI
35
130
0
01 Feb 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
30
158
0
13 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
14
67
0
04 Jan 2022
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks
P. Esser
L. C. Vankadara
D. Ghoshdastidar
28
53
0
07 Dec 2021
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
22
639
0
07 Dec 2021
Scaling Up Influence Functions
Andrea Schioppa
Polina Zablotskaia
David Vilar
Artem Sokolov
TDI
25
90
0
06 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
36
16
0
05 Dec 2021
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
24
12
0
04 Dec 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Not all noise is accounted equally: How differentially private learning benefits from large sampling rates
Friedrich Dörmann
Osvald Frisk
L. Andersen
Christian Fischer Pedersen
FedML
54
25
0
12 Oct 2021
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
37
57
0
23 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
32
16
0
20 Sep 2021
ComSum: Commit Messages Summarization and Meaning Preservation
Leshem Choshen
Idan Amit
17
4
0
23 Aug 2021
Large-Scale Differentially Private BERT
Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
27
131
0
03 Aug 2021
Memorization in Deep Neural Networks: Does the Loss Function matter?
Deep Patel
P. Sastry
TDI
16
8
0
21 Jul 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Membership Inference on Word Embedding and Beyond
Saeed Mahloujifar
Huseyin A. Inan
Melissa Chase
Esha Ghosh
Marcello Hasegawa
MIACV
SILM
19
46
0
21 Jun 2021
The Curious Case of Hallucinations in Neural Machine Translation
Vikas Raunak
Arul Menezes
Marcin Junczys-Dowmunt
13
189
0
14 Apr 2021
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
13
91
0
10 Feb 2021
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu
Sivakanth Gopi
Janardhan Kulkarni
Y. Lee
J. Shen
U. Tantipongpipat
FedML
24
41
0
05 Feb 2021
Modifying Memories in Transformer Models
Chen Zhu
A. S. Rawat
Manzil Zaheer
Srinadh Bhojanapalli
Daliang Li
Felix X. Yu
Sanjiv Kumar
KELM
13
190
0
01 Dec 2020
On the Privacy Risks of Algorithmic Fairness
Hong Chang
Reza Shokri
FaML
16
109
0
07 Nov 2020
Previous
1
2
3
Next