ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.05301
  4. Cited By
Learning Curves for Deep Neural Networks: A Gaussian Field Theory
  Perspective

Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective

12 June 2019
Omry Cohen
Orit Malka
Zohar Ringel
    AI4CE
ArXivPDFHTML

Papers citing "Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective"

9 / 9 papers shown
Title
Simplicity Bias in Transformers and their Ability to Learn Sparse
  Boolean Functions
Simplicity Bias in Transformers and their Ability to Learn Sparse Boolean Functions
S. Bhattamishra
Arkil Patel
Varun Kanade
Phil Blunsom
22
44
0
22 Nov 2022
Separation of Scales and a Thermodynamic Description of Feature Learning
  in Some CNNs
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
33
50
0
31 Dec 2021
A self consistent theory of Gaussian Processes captures feature learning
  effects in finite CNNs
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Explaining Neural Scaling Laws
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
Cengiz Pehlevan
19
13
0
30 Jun 2020
Predicting the outputs of finite deep neural networks trained with noisy
  gradients
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
16
20
0
02 Apr 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural
  Networks
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
Cengiz Pehlevan
146
201
0
07 Feb 2020
Non-Gaussian processes and neural networks at finite widths
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
12
88
0
30 Sep 2019
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1