ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.05721
  4. Cited By
Visual Wake Words Dataset

Visual Wake Words Dataset

12 June 2019
Aakanksha Chowdhery
Pete Warden
Jonathon Shlens
Andrew G. Howard
Rocky Rhodes
    VLM
ArXivPDFHTML

Papers citing "Visual Wake Words Dataset"

50 / 52 papers shown
Title
Hardware/Software Co-Design of RISC-V Extensions for Accelerating Sparse DNNs on FPGAs
Hardware/Software Co-Design of RISC-V Extensions for Accelerating Sparse DNNs on FPGAs
Muhammad Sabih
Abrarul Karim
Jakob Wittmann
Frank Hannig
J. Teich
73
0
0
28 Apr 2025
MicroFlow: An Efficient Rust-Based Inference Engine for TinyML
MicroFlow: An Efficient Rust-Based Inference Engine for TinyML
Matteo Carnelos
Francesco Pasti
Nicola Bellotto
18
1
0
28 Sep 2024
Mixed-precision Neural Networks on RISC-V Cores: ISA extensions for
  Multi-Pumped Soft SIMD Operations
Mixed-precision Neural Networks on RISC-V Cores: ISA extensions for Multi-Pumped Soft SIMD Operations
Giorgos Armeniakos
Alexis Maras
S. Xydis
Dimitrios Soudris
MQ
21
3
0
19 Jul 2024
On-Device Training of Fully Quantized Deep Neural Networks on Cortex-M
  Microcontrollers
On-Device Training of Fully Quantized Deep Neural Networks on Cortex-M Microcontrollers
M. Deutel
Frank Hannig
Christopher Mutschler
Jürgen Teich
MQ
25
0
0
15 Jul 2024
TinySV: Speaker Verification in TinyML with On-device Learning
TinySV: Speaker Verification in TinyML with On-device Learning
Massimo Pavan
Gioele Mombelli
Francesco Sinacori
Manuel Roveri
43
2
0
03 Jun 2024
LLS: Local Learning Rule for Deep Neural Networks Inspired by Neural
  Activity Synchronization
LLS: Local Learning Rule for Deep Neural Networks Inspired by Neural Activity Synchronization
M. Apolinario
Arani Roy
Kaushik Roy
35
2
0
24 May 2024
Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for
  TinyML Person Detection
Wake Vision: A Large-scale, Diverse Dataset and Benchmark Suite for TinyML Person Detection
Colby R. Banbury
Emil Njor
Matthew P. Stewart
Pete Warden
M. Kudlur
Nat Jeffries
Xenofon Fafoutis
Vijay Janapa Reddi
VLM
42
0
0
01 May 2024
On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure
  Use Case
On TinyML and Cybersecurity: Electric Vehicle Charging Infrastructure Use Case
Fatemeh Dehrouyeh
Li Yang
F. Badrkhani Ajaei
Abdallah Shami
25
6
0
25 Apr 2024
DTMM: Deploying TinyML Models on Extremely Weak IoT Devices with Pruning
DTMM: Deploying TinyML Models on Extremely Weak IoT Devices with Pruning
Lixiang Han
Zhen Xiao
Zhenjiang Li
41
5
0
17 Jan 2024
Towards On-device Learning on the Edge: Ways to Select Neurons to Update
  under a Budget Constraint
Towards On-device Learning on the Edge: Ways to Select Neurons to Update under a Budget Constraint
Ael Quélennec
Enzo Tartaglione
Pavlo Mozharovskyi
Van-Tam Nguyen
26
2
0
08 Dec 2023
Enhancing Neural Architecture Search with Multiple Hardware Constraints
  for Deep Learning Model Deployment on Tiny IoT Devices
Enhancing Neural Architecture Search with Multiple Hardware Constraints for Deep Learning Model Deployment on Tiny IoT Devices
Alessio Burrello
Matteo Risso
Beatrice Alessandra Motetti
Enrico Macii
Luca Benini
Daniele Jahier Pagliari
23
8
0
11 Oct 2023
Audio Tagging on an Embedded Hardware Platform
Audio Tagging on an Embedded Hardware Platform
Gabriel Bibbó
Arshdeep Singh
Mark D. Plumbley
11
0
0
15 Jun 2023
Datasheets for Machine Learning Sensors: Towards Transparency,
  Auditability, and Responsibility for Intelligent Sensing
Datasheets for Machine Learning Sensors: Towards Transparency, Auditability, and Responsibility for Intelligent Sensing
Matthew P. Stewart
Pete Warden
Yasmine Omri
Shvetank Prakash
Joao Santos
...
Jim MacArthur
Nat Jeffries
Sachin Katti
Brian Plancher
Vijay Janapa Reddi
22
1
0
15 Jun 2023
RAMAN: A Re-configurable and Sparse tinyML Accelerator for Inference on
  Edge
RAMAN: A Re-configurable and Sparse tinyML Accelerator for Inference on Edge
Adithya Krishna
Srikanth Rohit Nudurupati
Chandana D G
Pritesh Dwivedi
André van Schaik
M. Mehendale
Chetan Singh Thakur
22
11
0
10 Jun 2023
AnalogNAS: A Neural Network Design Framework for Accurate Inference with
  Analog In-Memory Computing
AnalogNAS: A Neural Network Design Framework for Accurate Inference with Analog In-Memory Computing
Hadjer Benmeziane
C. Lammie
I. Boybat
M. Rasch
M. Le Gallo
...
Smail Niar
Hamza Ouarnoughi
V. Narayanan
A. Sebastian
K. E. Maghraoui
27
7
0
17 May 2023
Pex: Memory-efficient Microcontroller Deep Learning through Partial
  Execution
Pex: Memory-efficient Microcontroller Deep Learning through Partial Execution
Edgar Liberis
Nicholas D. Lane
13
3
0
30 Nov 2022
Edge Impulse: An MLOps Platform for Tiny Machine Learning
Edge Impulse: An MLOps Platform for Tiny Machine Learning
Shawn Hymel
Colby R. Banbury
Daniel Situnayake
A. Elium
Carl Ward
...
Louis Moreau
Dmitry Maslov
A. Beavis
Jan Jongboom
Vijay Janapa Reddi
VLM
LRM
40
95
0
02 Nov 2022
Enabling ISP-less Low-Power Computer Vision
Enabling ISP-less Low-Power Computer Vision
Gourav Datta
Zeyu Liu
Zihan Yin
Linyu Sun
Akhilesh R. Jaiswal
P. Beerel
VLM
18
7
0
11 Oct 2022
Hardware-aware mobile building block evaluation for computer vision
Hardware-aware mobile building block evaluation for computer vision
Maxim Bonnaerens
Matthias Anton Freiberger
Marian Verhelst
J. Dambre
20
1
0
26 Aug 2022
Accelerating Deep Learning Model Inference on Arm CPUs with Ultra-Low
  Bit Quantization and Runtime
Accelerating Deep Learning Model Inference on Arm CPUs with Ultra-Low Bit Quantization and Runtime
Saad Ashfaq
Mohammadhossein Askarihemmat
Sudhakar Sah
Ehsan Saboori
Olivier Mastropietro
Alexander Hoffman
BDL
MQ
15
4
0
18 Jul 2022
T-RECX: Tiny-Resource Efficient Convolutional neural networks with
  early-eXit
T-RECX: Tiny-Resource Efficient Convolutional neural networks with early-eXit
N. Ghanathe
Steve Wilton
19
10
0
14 Jul 2022
On-Device Training Under 256KB Memory
On-Device Training Under 256KB Memory
Ji Lin
Ligeng Zhu
Wei-Ming Chen
Wei-Chen Wang
Chuang Gan
Song Han
MQ
25
194
0
30 Jun 2022
Machine Learning Sensors
Machine Learning Sensors
Pete Warden
Matthew P. Stewart
Brian Plancher
Colby R. Banbury
Shvetank Prakash
Emma Chen
Zain Asgar
Sachin Katti
Vijay Janapa Reddi
37
12
0
07 Jun 2022
Machine Learning for Microcontroller-Class Hardware: A Review
Machine Learning for Microcontroller-Class Hardware: A Review
Swapnil Sayan Saha
S. Sandha
Mani B. Srivastava
21
118
0
29 May 2022
Depth Pruning with Auxiliary Networks for TinyML
Depth Pruning with Auxiliary Networks for TinyML
Josen Daniel De Leon
Rowel Atienza
VLM
4
11
0
22 Apr 2022
Intelligence at the Extreme Edge: A Survey on Reformable TinyML
Intelligence at the Extreme Edge: A Survey on Reformable TinyML
Visal Rajapakse
Ishan Karunanayake
Nadeem Ahmed
SyDa
28
53
0
02 Apr 2022
Toward Efficient Hyperspectral Image Processing inside Camera Pixels
Toward Efficient Hyperspectral Image Processing inside Camera Pixels
Gourav Datta
Zihan Yin
A. Jacob
Akhilesh R. Jaiswal
P. Beerel
16
8
0
11 Mar 2022
P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained
  TinyML Applications
P2M: A Processing-in-Pixel-in-Memory Paradigm for Resource-Constrained TinyML Applications
Gourav Datta
Souvik Kundu
Zihan Yin
R. T. Lakkireddy
Joe Mathai
A. Jacob
P. Beerel
Akhilesh R. Jaiswal
16
36
0
07 Mar 2022
Improving the Energy Efficiency and Robustness of tinyML Computer Vision
  using Log-Gradient Input Images
Improving the Energy Efficiency and Robustness of tinyML Computer Vision using Log-Gradient Input Images
Qianyun Lu
B. Murmann
16
6
0
04 Mar 2022
AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On
  Analog Compute-in-Memory Accelerator
AnalogNets: ML-HW Co-Design of Noise-robust TinyML Models and Always-On Analog Compute-in-Memory Accelerator
Chuteng Zhou
F. García-Redondo
Julian Büchel
I. Boybat
Xavier Timoneda Comas
S. Nandakumar
Shidhartha Das
A. Sebastian
M. Le Gallo
P. Whatmough
25
16
0
10 Nov 2021
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Ji Lin
Wei-Ming Chen
Han Cai
Chuang Gan
Song Han
34
152
0
28 Oct 2021
Differentiable Network Pruning for Microcontrollers
Differentiable Network Pruning for Microcontrollers
Edgar Liberis
Nicholas D. Lane
16
18
0
15 Oct 2021
TinyFedTL: Federated Transfer Learning on Tiny Devices
TinyFedTL: Federated Transfer Learning on Tiny Devices
Kavya Kopparapu
Eric Lin
78
18
0
03 Oct 2021
MLPerf Tiny Benchmark
MLPerf Tiny Benchmark
Colby R. Banbury
Vijay Janapa Reddi
P. Torelli
J. Holleman
Nat Jeffries
...
Videet Parekh
Honson Tran
Nhan Tran
Niu Wenxu
Xu Xuesong
VLM
32
183
0
14 Jun 2021
Widening Access to Applied Machine Learning with TinyML
Widening Access to Applied Machine Learning with TinyML
Vijay Janapa Reddi
Brian Plancher
Susan Kennedy
L. Moroney
Pete Warden
...
Dominic Pajak
Dhilan Ramaprasad
J. E. Smith
Matthew P. Stewart
D. Tingley
14
51
0
07 Jun 2021
On-device Federated Learning with Flower
On-device Federated Learning with Flower
Akhil Mathur
Daniel J. Beutel
Pedro Porto Buarque de Gusmão
Javier Fernandez-Marques
Taner Topal
Xinchi Qiu
Titouan Parcollet
Yan Gao
Nicholas D. Lane
FedML
38
37
0
07 Apr 2021
TENT: Efficient Quantization of Neural Networks on the tiny Edge with
  Tapered FixEd PoiNT
TENT: Efficient Quantization of Neural Networks on the tiny Edge with Tapered FixEd PoiNT
H. F. Langroudi
Vedant Karia
Tej Pandit
Dhireesha Kudithipudi
MQ
19
10
0
06 Apr 2021
Quantization-Guided Training for Compact TinyML Models
Quantization-Guided Training for Compact TinyML Models
Sedigh Ghamari
Koray Ozcan
Thu Dinh
A. Melnikov
Juan Carvajal
Jan Ernst
S. Chai
MQ
16
16
0
10 Mar 2021
$μ$NAS: Constrained Neural Architecture Search for Microcontrollers
μμμNAS: Constrained Neural Architecture Search for Microcontrollers
Edgar Liberis
L. Dudziak
Nicholas D. Lane
BDL
13
103
0
27 Oct 2020
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems
R. David
Jared Duke
Advait Jain
Vijay Janapa Reddi
Nat Jeffries
...
Meghna Natraj
Shlomi Regev
Rocky Rhodes
Tiezhen Wang
Pete Warden
107
465
0
17 Oct 2020
Leveraging Automated Mixed-Low-Precision Quantization for tiny edge
  microcontrollers
Leveraging Automated Mixed-Low-Precision Quantization for tiny edge microcontrollers
Manuele Rusci
Marco Fariselli
Alessandro Capotondi
Luca Benini
MQ
14
17
0
12 Aug 2020
Flower: A Friendly Federated Learning Research Framework
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
15
782
0
28 Jul 2020
MCUNet: Tiny Deep Learning on IoT Devices
MCUNet: Tiny Deep Learning on IoT Devices
Ji Lin
Wei-Ming Chen
Yujun Lin
J. Cohn
Chuang Gan
Song Han
56
475
0
20 Jul 2020
DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural
  Networks
DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks
Hassan Dbouk
Hetul Sanghvi
M. Mehendale
Naresh R Shanbhag
MQ
17
9
0
19 Jul 2020
Robustifying the Deployment of tinyML Models for Autonomous
  mini-vehicles
Robustifying the Deployment of tinyML Models for Autonomous mini-vehicles
Miguel de Prado
Manuele Rusci
Romain Donze
Alessandro Capotondi
Serge Monnerat
Luca Benini and
Nuria Pazos
17
39
0
01 Jul 2020
Benchmarking TinyML Systems: Challenges and Direction
Benchmarking TinyML Systems: Challenges and Direction
Colby R. Banbury
Vijay Janapa Reddi
Max Lam
William Fu
A. Fazel
...
Jae-sun Seo
Jeff Sieracki
Urmish Thakker
Marian Verhelst
Poonam Yadav
98
228
0
10 Mar 2020
RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference
RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference
Oindrila Saha
Aditya Kusupati
H. Simhadri
Manik Varma
Prateek Jain
19
54
0
27 Feb 2020
Searching for Winograd-aware Quantized Networks
Searching for Winograd-aware Quantized Networks
Javier Fernandez-Marques
P. Whatmough
Andrew Mundy
Matthew Mattina
MQ
11
40
0
25 Feb 2020
The Final Frontier: Deep Learning in Space
The Final Frontier: Deep Learning in Space
Vivek Kothari
Edgar Liberis
Nicholas D. Lane
16
81
0
27 Jan 2020
Neural networks on microcontrollers: saving memory at inference via
  operator reordering
Neural networks on microcontrollers: saving memory at inference via operator reordering
Edgar Liberis
Nicholas D. Lane
6
46
0
02 Oct 2019
12
Next