Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.07774
Cited By
v1
v2 (latest)
On the interplay between noise and curvature and its effect on optimization and generalization
18 June 2019
Valentin Thomas
Fabian Pedregosa
B. V. Merrienboer
Pierre-Antoine Mangazol
Yoshua Bengio
Nicolas Le Roux
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the interplay between noise and curvature and its effect on optimization and generalization"
20 / 20 papers shown
Title
An Improved Empirical Fisher Approximation for Natural Gradient Descent
Xiaodong Wu
Wenyi Yu
Chao Zhang
Philip Woodland
74
4
0
10 Jun 2024
How to select an objective function using information theory
T. Hodson
T. Over
T. Smith
Lucy M. Marshall
27
1
0
10 Dec 2022
Two Facets of SDE Under an Information-Theoretic Lens: Generalization of SGD via Training Trajectories and via Terminal States
Ziqiao Wang
Yongyi Mao
111
12
0
19 Nov 2022
Noise Injection as a Probe of Deep Learning Dynamics
Noam Levi
I. Bloch
M. Freytsis
T. Volansky
72
2
0
24 Oct 2022
Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes
M. Kodryan
E. Lobacheva
M. Nakhodnov
Dmitry Vetrov
105
17
0
08 Sep 2022
Scalable K-FAC Training for Deep Neural Networks with Distributed Preconditioning
Lin Zhang
Shaoshuai Shi
Wei Wang
Yue Liu
65
10
0
30 Jun 2022
Hybrid quantum ResNet for car classification and its hyperparameter optimization
Asel Sagingalieva
Mohammad Kordzanganeh
Andrii Kurkin
Artem Melnikov
Daniil Kuhmistrov
M. Perelshtein
A. Melnikov
Andrea Skolik
David Von Dollen
153
38
0
10 May 2022
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
99
2
0
07 Dec 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
139
210
0
07 Sep 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
93
20
0
19 Jul 2021
Accelerating Distributed K-FAC with Smart Parallelism of Computing and Communication Tasks
Shaoshuai Shi
Lin Zhang
Yue Liu
123
9
0
14 Jul 2021
M-FAC: Efficient Matrix-Free Approximations of Second-Order Information
Elias Frantar
Eldar Kurtic
Dan Alistarh
72
59
0
07 Jul 2021
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure
Felix Dangel
Lukas Tatzel
Philipp Hennig
83
13
0
04 Jun 2021
Post-mortem on a deep learning contest: a Simpson's paradox and the complementary roles of scale metrics versus shape metrics
Charles H. Martin
Michael W. Mahoney
75
20
0
01 Jun 2021
Strength of Minibatch Noise in SGD
Liu Ziyin
Kangqiao Liu
Takashi Mori
Masakuni Ueda
ODL
MLT
46
35
0
10 Feb 2021
Deep Learning is Singular, and That's Good
Daniel Murfet
Susan Wei
Biwei Huang
Hui Li
Jesse Gell-Redman
T. Quella
UQCV
79
29
0
22 Oct 2020
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
85
37
0
13 Feb 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
195
153
0
06 Nov 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
70
8
0
06 Sep 2019
The Generalization-Stability Tradeoff In Neural Network Pruning
Brian Bartoldson
Ari S. Morcos
Adrian Barbu
G. Erlebacher
94
76
0
09 Jun 2019
1