Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.07983
Cited By
Explanations can be manipulated and geometry is to blame
19 June 2019
Ann-Kathrin Dombrowski
Maximilian Alber
Christopher J. Anders
M. Ackermann
K. Müller
Pan Kessel
AAML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explanations can be manipulated and geometry is to blame"
27 / 77 papers shown
Title
AdjointBackMapV2: Precise Reconstruction of Arbitrary CNN Unit's Activation via Adjoint Operators
Qing Wan
Siu Wun Cheung
Yoonsuck Choe
19
0
0
04 Oct 2021
Toward a Unified Framework for Debugging Concept-based Models
A. Bontempelli
Fausto Giunchiglia
Andrea Passerini
Stefano Teso
18
4
0
23 Sep 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
38
5
0
15 Sep 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
28
25
0
23 Aug 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
31
65
0
23 Jun 2021
Characterizing the risk of fairwashing
Ulrich Aivodji
Hiromi Arai
Sébastien Gambs
Satoshi Hara
20
27
0
14 Jun 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
31
20
0
26 Apr 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
28
25
0
20 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Knowledge Infused Policy Gradients for Adaptive Pandemic Control
Kaushik Roy
Qi Zhang
Manas Gaur
A. Sheth
14
12
0
11 Feb 2021
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
18
18
0
10 Dec 2020
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
15
84
0
12 Nov 2020
Visualizing Color-wise Saliency of Black-Box Image Classification Models
Yuhki Hatakeyama
Hiroki Sakuma
Yoshinori Konishi
Kohei Suenaga
FAtt
14
3
0
06 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
17
9
0
29 Sep 2020
Machine Guides, Human Supervises: Interactive Learning with Global Explanations
Teodora Popordanoska
Mohit Kumar
Stefano Teso
6
21
0
21 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aivodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
27
51
0
03 Sep 2020
A simple defense against adversarial attacks on heatmap explanations
Laura Rieger
Lars Kai Hansen
FAtt
AAML
25
37
0
13 Jul 2020
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
16
66
0
26 Jun 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
19
31
0
16 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei-Yue Wang
AAML
41
18
0
09 Jun 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
26
215
0
05 Jun 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
41
82
0
17 Mar 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
24
143
0
10 Feb 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
15
207
0
15 Jan 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
14
803
0
06 Nov 2019
Contextual Explanation Networks
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric P. Xing
CML
24
82
0
29 May 2017
Previous
1
2