ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08324
  4. Cited By
The Functional Neural Process

The Functional Neural Process

19 June 2019
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
    BDL
ArXivPDFHTML

Papers citing "The Functional Neural Process"

50 / 58 papers shown
Title
Dimension Agnostic Neural Processes
Dimension Agnostic Neural Processes
Hyungi Lee
Chaeyun Jang
Dongbok Lee
Juho Lee
UQCV
AI4CE
52
0
0
28 Feb 2025
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Q. Wang
Marco Federici
H. V. Hoof
UQCV
BDL
39
13
0
08 Jan 2025
Large Scale Hierarchical Industrial Demand Time-Series Forecasting
  incorporating Sparsity
Large Scale Hierarchical Industrial Demand Time-Series Forecasting incorporating Sparsity
Harshavardhan Kamarthi
Aditya B. Sasanur
Xinjie Tong
Xingyu Zhou
James Peters
Joe Czyzyk
B. Aditya Prakash
AI4TS
26
2
0
02 Jul 2024
Learning Graph Structures and Uncertainty for Accurate and Calibrated
  Time-series Forecasting
Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B Aditya Prakash
AI4TS
43
0
0
02 Jul 2024
Spectral Convolutional Conditional Neural Processes
Spectral Convolutional Conditional Neural Processes
Peiman Mohseni
Nick Duffield
37
3
0
19 Apr 2024
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Ruijia Niu
D. Wu
Kai Kim
Yi-An Ma
D. Watson‐Parris
Rose Yu
AI4CE
32
2
0
29 Feb 2024
PEMS: Pre-trained Epidemic Time-series Models
PEMS: Pre-trained Epidemic Time-series Models
Harshavardhan Kamarthi
B. A. Prakash
AI4TS
26
2
0
14 Nov 2023
Latent Task-Specific Graph Network Simulators
Latent Task-Specific Graph Network Simulators
Philipp Dahlinger
Niklas Freymuth
Michael Volpp
Tai Hoang
Gerhard Neumann
AI4CE
27
0
0
09 Nov 2023
When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
30
5
0
17 Oct 2023
Machine Learning for Infectious Disease Risk Prediction: A Survey
Machine Learning for Infectious Disease Risk Prediction: A Survey
Mutong Liu
Yang Liu
Jiming Liu
LM&MA
AI4CE
18
0
0
06 Aug 2023
NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic
  Segmentation
NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic Segmentation
Jianfeng Wang
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
Thomas Lukasiewicz
UQCV
30
3
0
05 Aug 2023
Geometric Neural Diffusion Processes
Geometric Neural Diffusion Processes
Emile Mathieu
Vincent Dutordoir
M. Hutchinson
Valentin De Bortoli
Yee Whye Teh
Richard E. Turner
DiffM
36
8
0
11 Jul 2023
Disentangled Multi-Fidelity Deep Bayesian Active Learning
Disentangled Multi-Fidelity Deep Bayesian Active Learning
D. Wu
Ruijia Niu
Matteo Chinazzi
Yi-An Ma
Rose Yu
AI4CE
30
7
0
07 May 2023
Martingale Posterior Neural Processes
Martingale Posterior Neural Processes
Hyungi Lee
Eunggu Yun
G. Nam
Edwin Fong
Juho Lee
UQCV
25
7
0
19 Apr 2023
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
Jianfeng Wang
Xiaolin Hu
Thomas Lukasiewicz
AAML
BDL
28
0
0
31 Jan 2023
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Yohan Jung
Jinkyoo Park
BDL
16
0
0
22 Oct 2022
Spectral Diffusion Processes
Spectral Diffusion Processes
Angus Phillips
Thomas Seror
M. Hutchinson
Valentin De Bortoli
Arnaud Doucet
Emile Mathieu
DiffM
59
15
0
28 Sep 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
21
4
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
Data-Centric Epidemic Forecasting: A Survey
Data-Centric Epidemic Forecasting: A Survey
Alexander Rodríguez
Harshavardhan Kamarthi
Pulak Agarwal
Javen Ho
Mira Patel
Suchet Sapre
B. Prakash
OOD
29
18
0
19 Jul 2022
NP-Match: When Neural Processes meet Semi-Supervised Learning
NP-Match: When Neural Processes meet Semi-Supervised Learning
Jianfeng Wang
Thomas Lukasiewicz
Daniela Massiceti
Xiaolin Hu
Vladimir Pavlovic
A. Neophytou
BDL
63
41
0
03 Jul 2022
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Yumeng Li
Ni Gao
Hanna Ziesche
Gerhard Neumann
26
5
0
14 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural Processes
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
10
13
0
10 Jun 2022
Meta-Learning Regrasping Strategies for Physical-Agnostic Objects
Meta-Learning Regrasping Strategies for Physical-Agnostic Objects
Ni Gao
Jingyu Zhang
Ruijie Chen
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
38
10
0
23 May 2022
What Matters For Meta-Learning Vision Regression Tasks?
What Matters For Meta-Learning Vision Regression Tasks?
Ni Gao
Hanna Ziesche
Ngo Anh Vien
Michael Volpp
Gerhard Neumann
VLM
18
29
0
09 Mar 2022
The Internet of Federated Things (IoFT): A Vision for the Future and
  In-depth Survey of Data-driven Approaches for Federated Learning
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
C. Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
36
50
0
09 Nov 2021
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
  Meta-Learning
ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous Meta-Learning
Zhe Wang
J. E. Grigsby
Arshdeep Sekhon
Yanjun Qi
50
4
0
27 Sep 2021
CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting
CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
46
17
0
15 Sep 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
24
1
0
05 Jul 2021
Relational VAE: A Continuous Latent Variable Model for Graph Structured
  Data
Relational VAE: A Continuous Latent Variable Model for Graph Structured Data
Charilaos Mylonas
I. Abdallah
Eleni Chatzi
BDL
13
1
0
30 Jun 2021
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural
  Processes on Time Series Data
GP-ConvCNP: Better Generalization for Convolutional Conditional Neural Processes on Time Series Data
Jens Petersen
Gregor Koehler
David Zimmerer
Fabian Isensee
Paul F. Jäger
Klaus H. Maier-Hein
BDL
AI4TS
31
3
0
09 Jun 2021
When in Doubt: Neural Non-Parametric Uncertainty Quantification for
  Epidemic Forecasting
When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
BDL
23
20
0
07 Jun 2021
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
Deep Bayesian Active Learning for Accelerating Stochastic Simulation
D. Wu
Ruijia Niu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
30
8
0
05 Jun 2021
Evidential Turing Processes
Evidential Turing Processes
M. Kandemir
Abdullah Akgul
Manuel Haussmann
Gözde B. Ünal
EDL
UQCV
BDL
33
9
0
02 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
Bruno Andreis
Jeffrey Willette
Juho Lee
Sung Ju Hwang
22
9
0
02 Mar 2021
Group Equivariant Conditional Neural Processes
Group Equivariant Conditional Neural Processes
M. Kawano
Wataru Kumagai
Akiyoshi Sannai
Yusuke Iwasawa
Y. Matsuo
BDL
45
20
0
17 Feb 2021
Autoencoding Variational Autoencoder
Autoencoding Variational Autoencoder
A. Cemgil
Sumedh Ghaisas
Krishnamurthy Dvijotham
Sven Gowal
Pushmeet Kohli
DRL
BDL
23
41
0
07 Dec 2020
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDL
UQCV
19
22
0
04 Dec 2020
Further Analysis of Outlier Detection with Deep Generative Models
Further Analysis of Outlier Detection with Deep Generative Models
Ziyu Wang
Bin Dai
David Wipf
Jun Zhu
14
39
0
25 Oct 2020
Incorporating Interpretable Output Constraints in Bayesian Neural
  Networks
Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Himabindu Lakkaraju
Finale Doshi-Velez
UQCV
BDL
17
16
0
21 Oct 2020
Message Passing Neural Processes
Message Passing Neural Processes
Ben Day
Cătălina Cangea
Arian R. Jamasb
Pietro Lió
24
11
0
29 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with
  Hierarchical Latent Variables
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
21
42
0
21 Aug 2020
Bootstrapping Neural Processes
Bootstrapping Neural Processes
Juho Lee
Yoonho Lee
Jungtaek Kim
Eunho Yang
Sung Ju Hwang
Yee Whye Teh
UQCV
BDL
18
42
0
07 Aug 2020
Graph-Based Continual Learning
Graph-Based Continual Learning
Binh Tang
David S. Matteson
BDL
CLL
29
36
0
09 Jul 2020
Meta-Learning Stationary Stochastic Process Prediction with
  Convolutional Neural Processes
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Y. K. Foong
W. Bruinsma
Jonathan Gordon
Yann Dubois
James Requeima
Richard E. Turner
BDL
11
77
0
02 Jul 2020
Robustifying Sequential Neural Processes
Robustifying Sequential Neural Processes
Jaesik Yoon
Gautam Singh
Sungjin Ahn
26
27
0
29 Jun 2020
Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Elias Kassapis
G. Dikov
D. K. Gupta
C. Nugteren
38
17
0
23 Jun 2020
Predictive Complexity Priors
Predictive Complexity Priors
Eric T. Nalisnick
Jonathan Gordon
José Miguel Hernández-Lobato
BDL
UQCV
29
19
0
18 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
24
3
0
15 Jun 2020
12
Next