Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.08386
Cited By
Inherent Tradeoffs in Learning Fair Representations
19 June 2019
Han Zhao
Geoffrey J. Gordon
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inherent Tradeoffs in Learning Fair Representations"
21 / 21 papers shown
Title
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
53
0
0
28 Feb 2025
Fair Resource Allocation in Weakly Coupled Markov Decision Processes
Xiaohui Tu
Yossiri Adulyasak
Nima Akbarzadeh
Erick Delage
29
0
0
14 Nov 2024
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
Charles Jones
Fabio De Sousa Ribeiro
Mélanie Roschewitz
Daniel Coelho De Castro
Ben Glocker
FaML
OOD
CML
57
1
0
05 Oct 2024
Is On-Device AI Broken and Exploitable? Assessing the Trust and Ethics in Small Language Models
Kalyan Nakka
Jimmy Dani
Nitesh Saxena
37
1
0
08 Jun 2024
Learning to Generate Equitable Text in Dialogue from Biased Training Data
Anthony Sicilia
Malihe Alikhani
30
15
0
10 Jul 2023
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Jiaheng Wei
Zhaowei Zhu
Gang Niu
Tongliang Liu
Sijia Liu
Masashi Sugiyama
Yang Liu
19
6
0
22 Mar 2023
Fairness-aware Regression Robust to Adversarial Attacks
Yulu Jin
Lifeng Lai
FaML
OOD
8
4
0
04 Nov 2022
To the Fairness Frontier and Beyond: Identifying, Quantifying, and Optimizing the Fairness-Accuracy Pareto Frontier
Camille Olivia Little
Michael Weylandt
Genevera I. Allen
14
13
0
31 May 2022
Survey on Fair Reinforcement Learning: Theory and Practice
Pratik Gajane
A. Saxena
M. Tavakol
George Fletcher
Mykola Pechenizkiy
FaML
OffRL
15
13
0
20 May 2022
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
Ferdinando Fioretto
Cuong Tran
Pascal Van Hentenryck
Keyu Zhu
FaML
11
59
0
16 Feb 2022
Group-Aware Threshold Adaptation for Fair Classification
T. Jang
P. Shi
Xiaoqian Wang
FaML
71
35
0
08 Nov 2021
Fair Representation: Guaranteeing Approximate Multiple Group Fairness for Unknown Tasks
Xudong Shen
Yongkang Wong
Mohan S. Kankanhalli
FaML
11
20
0
01 Sep 2021
Learning Language and Multimodal Privacy-Preserving Markers of Mood from Mobile Data
Paul Pu Liang
Terrance Liu
Anna Cai
Michal Muszynski
Ryo Ishii
Nicholas B. Allen
Randy P. Auerbach
David Brent
Ruslan Salakhutdinov
Louis-Philippe Morency
30
16
0
24 Jun 2021
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning
Yuyan Wang
Xuezhi Wang
Alex Beutel
Flavien Prost
Jilin Chen
Ed H. Chi
FaML
11
46
0
04 Jun 2021
Representative & Fair Synthetic Data
P. Tiwald
Alexandra Ebert
Daniel Soukup
17
12
0
07 Apr 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
225
485
0
31 Dec 2020
On Learning Language-Invariant Representations for Universal Machine Translation
Hao Zhao
Junjie Hu
Andrej Risteski
20
8
0
11 Aug 2020
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
208
663
0
17 Feb 2018
A statistical framework for fair predictive algorithms
K. Lum
J. Johndrow
FaML
165
103
0
25 Oct 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
786
0
19 Feb 2009
1