Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.10186
Cited By
A Stochastic Composite Gradient Method with Incremental Variance Reduction
24 June 2019
Junyu Zhang
Lin Xiao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Stochastic Composite Gradient Method with Incremental Variance Reduction"
23 / 23 papers shown
Title
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
87
0
0
21 Nov 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
84
6
0
02 Jan 2023
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
109
16
0
11 Oct 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
124
18
0
18 Jul 2022
Algorithmic Foundations of Empirical X-risk Minimization
Tianbao Yang
145
6
0
01 Jun 2022
Learning Distributionally Robust Models at Scale via Composite Optimization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
Amin Karbasi
OOD
69
5
0
17 Mar 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
162
18
0
15 Feb 2022
Momentum Accelerates the Convergence of Stochastic AUPRC Maximization
Guanghui Wang
Minghao Yang
Lijun Zhang
Tianbao Yang
83
22
0
02 Jul 2021
Tighter Analysis of Alternating Stochastic Gradient Method for Stochastic Nested Problems
Tianyi Chen
Yuejiao Sun
W. Yin
80
33
0
25 Jun 2021
Randomized Stochastic Variance-Reduced Methods for Multi-Task Stochastic Bilevel Optimization
Zhishuai Guo
Quan Hu
Lijun Zhang
Tianbao Yang
142
31
0
05 May 2021
Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic Approximation under Markovian Noise
Thinh T. Doan
94
16
0
04 Apr 2021
On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction
Weilin Cong
M. Ramezani
M. Mahdavi
62
5
0
03 Mar 2021
On the Convergence and Sample Efficiency of Variance-Reduced Policy Gradient Method
Junyu Zhang
Chengzhuo Ni
Zheng Yu
Csaba Szepesvári
Mengdi Wang
125
69
0
17 Feb 2021
A Single-Timescale Method for Stochastic Bilevel Optimization
Tianyi Chen
Yuejiao Sun
Quan-Wu Xiao
W. Yin
93
79
0
09 Feb 2021
Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and Finite-Time Performance
Thinh T. Doan
92
46
0
03 Nov 2020
Solving Stochastic Compositional Optimization is Nearly as Easy as Solving Stochastic Optimization
Tianyi Chen
Yuejiao Sun
W. Yin
139
82
0
25 Aug 2020
Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems
Quoc Tran-Dinh
Deyi Liu
Lam M. Nguyen
80
13
0
27 Jun 2020
An Online Method for A Class of Distributionally Robust Optimization with Non-Convex Objectives
Qi Qi
Zhishuai Guo
Yi Tian Xu
Rong Jin
Tianbao Yang
102
47
0
17 Jun 2020
Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization
Yangyang Xu
Yibo Xu
69
25
0
31 May 2020
Momentum with Variance Reduction for Nonconvex Composition Optimization
Ziyi Chen
Yi Zhou
ODL
64
3
0
15 May 2020
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
64
24
0
17 Feb 2020
Finite-Time Analysis and Restarting Scheme for Linear Two-Time-Scale Stochastic Approximation
Thinh T. Doan
82
36
0
23 Dec 2019
Multi-Level Composite Stochastic Optimization via Nested Variance Reduction
Junyu Zhang
Lin Xiao
132
56
0
29 Aug 2019
1