ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10851
  4. Cited By
Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive
  Regret of Convex Functions
v1v2 (latest)

Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions

26 June 2019
Lijun Zhang
G. Wang
Wei-Wei Tu
Zhi Zhou
    ODL
ArXiv (abs)PDFHTML

Papers citing "Dual Adaptivity: A Universal Algorithm for Minimizing the Adaptive Regret of Convex Functions"

9 / 9 papers shown
Title
Non-stationary Bandit Convex Optimization: A Comprehensive Study
Non-stationary Bandit Convex Optimization: A Comprehensive Study
Xiaoqi Liu
Dorian Baudry
Julian Zimmert
Patrick Rebeschini
Arya Akhavan
74
0
0
03 Jun 2025
Universal Online Optimization in Dynamic Environments via Uniclass
  Prediction
Universal Online Optimization in Dynamic Environments via Uniclass Prediction
Arnold Salas
75
0
0
13 Feb 2023
Optimal Dynamic Regret in LQR Control
Optimal Dynamic Regret in LQR Control
Dheeraj Baby
Yu Wang
67
17
0
18 Jun 2022
Second Order Path Variationals in Non-Stationary Online Learning
Second Order Path Variationals in Non-Stationary Online Learning
Dheeraj Baby
Yu Wang
115
5
0
04 May 2022
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor
Lijun Zhang
Wei Jiang
Jinfeng Yi
Tianbao Yang
92
7
0
02 May 2022
Damped Online Newton Step for Portfolio Selection
Damped Online Newton Step for Portfolio Selection
Zakaria Mhammedi
Alexander Rakhlin
49
15
0
15 Feb 2022
Optimal Dynamic Regret in Proper Online Learning with Strongly Convex
  Losses and Beyond
Optimal Dynamic Regret in Proper Online Learning with Strongly Convex Losses and Beyond
Dheeraj Baby
Yu Wang
95
28
0
21 Jan 2022
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning
MetaGrad: Adaptation using Multiple Learning Rates in Online Learning
T. Erven
Wouter M. Koolen
Dirk van der Hoeven
ODL
107
23
0
12 Feb 2021
Adversarial Tracking Control via Strongly Adaptive Online Learning with
  Memory
Adversarial Tracking Control via Strongly Adaptive Online Learning with Memory
Zhiyu Zhang
Ashok Cutkosky
I. Paschalidis
94
15
0
02 Feb 2021
1