ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11228
  4. Cited By
Compositional Transfer in Hierarchical Reinforcement Learning

Compositional Transfer in Hierarchical Reinforcement Learning

26 June 2019
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
ArXivPDFHTML

Papers citing "Compositional Transfer in Hierarchical Reinforcement Learning"

10 / 10 papers shown
Title
LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Utsav Singh
Pramit Bhattacharyya
Vinay P. Namboodiri
LM&Ro
47
1
0
09 Jun 2024
Sharing Knowledge in Multi-Task Deep Reinforcement Learning
Sharing Knowledge in Multi-Task Deep Reinforcement Learning
Carlo DÉramo
Davide Tateo
Andrea Bonarini
Marcello Restelli
Jan Peters
59
124
0
17 Jan 2024
CRISP: Curriculum inducing Primitive Informed Subgoal Prediction
CRISP: Curriculum inducing Primitive Informed Subgoal Prediction
Utsav Singh
Vinay P. Namboodiri
31
3
0
07 Apr 2023
Data-efficient Hindsight Off-policy Option Learning
Data-efficient Hindsight Off-policy Option Learning
Markus Wulfmeier
Dushyant Rao
Roland Hafner
Thomas Lampe
A. Abdolmaleki
...
Michael Neunert
Dhruva Tirumala
Noah Y. Siegel
N. Heess
Martin Riedmiller
OffRL
23
47
0
30 Jul 2020
A Distributional View on Multi-Objective Policy Optimization
A Distributional View on Multi-Objective Policy Optimization
A. Abdolmaleki
Sandy H. Huang
Leonard Hasenclever
Michael Neunert
H. F. Song
Martina Zambelli
M. Martins
N. Heess
R. Hadsell
Martin Riedmiller
21
74
0
15 May 2020
Multi-Task Learning for Dense Prediction Tasks: A Survey
Multi-Task Learning for Dense Prediction Tasks: A Survey
Simon Vandenhende
Stamatios Georgoulis
Wouter Van Gansbeke
Marc Proesmans
Dengxin Dai
Luc Van Gool
CVBM
24
72
0
28 Apr 2020
Gradient Surgery for Multi-Task Learning
Gradient Surgery for Multi-Task Learning
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
36
1,172
0
19 Jan 2020
Continuous-Discrete Reinforcement Learning for Hybrid Control in
  Robotics
Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Michael Neunert
A. Abdolmaleki
Markus Wulfmeier
Thomas Lampe
Jost Tobias Springenberg
Roland Hafner
Francesco Romano
J. Buchli
N. Heess
Martin Riedmiller
13
91
0
02 Jan 2020
Scaling data-driven robotics with reward sketching and batch
  reinforcement learning
Scaling data-driven robotics with reward sketching and batch reinforcement learning
Serkan Cabi
Sergio Gomez Colmenarejo
Alexander Novikov
Ksenia Konyushkova
Scott E. Reed
...
David Barker
Jonathan Scholz
Misha Denil
Nando de Freitas
Ziyun Wang
OffRL
23
29
0
26 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
362
11,700
0
09 Mar 2017
1