ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11876
  4. Cited By
Uncertainty Based Detection and Relabeling of Noisy Image Labels

Uncertainty Based Detection and Relabeling of Noisy Image Labels

29 May 2019
Jan M. Köhler
Maximilian Autenrieth
William H. Beluch
    NoLa
ArXivPDFHTML

Papers citing "Uncertainty Based Detection and Relabeling of Noisy Image Labels"

8 / 8 papers shown
Title
Addressing out-of-distribution label noise in webly-labelled data
Addressing out-of-distribution label noise in webly-labelled data
Paul Albert
Diego Ortego
Eric Arazo
Noel E. O'Connor
Kevin McGuinness
NoLa
16
16
0
26 Oct 2021
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
  on Single Whole-Slide Images
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
Zhenzhen Wang
Carla Saoud
A. Popel
Aaron W. James
Aleksander S. Popel
Jeremias Sulam
21
21
0
22 Sep 2021
W2WNet: a two-module probabilistic Convolutional Neural Network with
  embedded data cleansing functionality
W2WNet: a two-module probabilistic Convolutional Neural Network with embedded data cleansing functionality
Francesco Ponzio
Enrico Macii
E. Ficarra
S. D. Cataldo
22
4
0
24 Mar 2021
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
Purvi Goel
Li Chen
NoLa
33
15
0
22 Mar 2021
Deep learning with noisy labels: exploring techniques and remedies in
  medical image analysis
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
18
535
0
05 Dec 2019
Data Valuation using Reinforcement Learning
Data Valuation using Reinforcement Learning
Jinsung Yoon
Sercan Ö. Arik
Tomas Pfister
TDI
25
173
0
25 Sep 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1