ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.01329
  4. Cited By
Mixed-Variable Bayesian Optimization
v1v2v3v4 (latest)

Mixed-Variable Bayesian Optimization

International Joint Conference on Artificial Intelligence (IJCAI), 2020
2 July 2019
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
ArXiv (abs)PDFHTML

Papers citing "Mixed-Variable Bayesian Optimization"

35 / 35 papers shown
Automated Discovery of Laser Dicing Processes with Bayesian Optimization for Semiconductor Manufacturing
Automated Discovery of Laser Dicing Processes with Bayesian Optimization for Semiconductor Manufacturing
D. Leeftink
Roman Doll
Heleen Visserman
Marco Post
Faysal Boughorbel
Max Hinne
Marcel van Gerven
44
0
0
28 Nov 2025
Function-on-Function Bayesian Optimization
Function-on-Function Bayesian Optimization
Jingru Huang
Haijie Xu
Manrui Jiang
Chen Zhang
72
0
0
16 Nov 2025
Beyond Heuristics: Globally Optimal Configuration of Implicit Neural Representations
Beyond Heuristics: Globally Optimal Configuration of Implicit Neural Representations
Sipeng Chen
Yan Zhang
Shibo Li
132
0
0
27 Sep 2025
Adaptive Linear Embedding for Nonstationary High-Dimensional Optimization
Adaptive Linear Embedding for Nonstationary High-Dimensional Optimization
Yuejiang Wen
Paul D. Franzon
BDL
116
0
0
16 May 2025
BARK: A Fully Bayesian Tree Kernel for Black-box Optimization
BARK: A Fully Bayesian Tree Kernel for Black-box Optimization
Toby Boyne
Jose Pablo Folch
Robert M. Lee
B. Shafei
Ruth Misener
GP
373
3
0
07 Mar 2025
Weighted Euclidean Distance Matrices over Mixed Continuous and Categorical Inputs for Gaussian Process ModelsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Mingyu Pu
Songhao Wang
Haowei Wang
Szu Hui Ng
224
0
0
04 Mar 2025
One Set to Rule Them All: How to Obtain General Chemical Conditions via Bayesian Optimization over Curried Functions
One Set to Rule Them All: How to Obtain General Chemical Conditions via Bayesian Optimization over Curried Functions
Stefan P. Schmid
Ella M. Rajaonson
C. Ser
Mohammad Haddadnia
Shi Xuan Leong
Alán Aspuru-Guzik
Agustinus Kristiadi
Kjell Jorner
Felix Strieth-Kalthoff
286
0
0
26 Feb 2025
Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation
Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel ApproximationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Yilin Xie
Shiqiang Zhang
J. Paulson
Calvin Tsay
249
7
0
22 Oct 2024
Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
Simulating, Fast and Slow: Learning Policies for Black-Box Optimization
F. V. Massoli
Tim Bakker
Thomas M. Hehn
Tribhuvanesh Orekondy
Arash Behboodi
259
0
0
06 Jun 2024
Bayesian optimization as a flexible and efficient design framework for
  sustainable process systems
Bayesian optimization as a flexible and efficient design framework for sustainable process systems
J. Paulson
Calvin Tsay
TPM
262
42
0
29 Jan 2024
Hidden-Variables Genetic Algorithm for Variable-Size Design Space
  Optimal Layout Problems with Application to Aerospace Vehicles
Hidden-Variables Genetic Algorithm for Variable-Size Design Space Optimal Layout Problems with Application to Aerospace VehiclesEngineering applications of artificial intelligence (EAAI), 2022
Juliette Gamot
M. Balesdent
A. Tremolet
Romain Wuilbercq
N. Melab
El-Ghazali Talbi
149
18
0
21 Dec 2022
c-TPE: Tree-structured Parzen Estimator with Inequality Constraints for
  Expensive Hyperparameter Optimization
c-TPE: Tree-structured Parzen Estimator with Inequality Constraints for Expensive Hyperparameter OptimizationInternational Joint Conference on Artificial Intelligence (IJCAI), 2022
Shuhei Watanabe
Katharina Eggensperger
289
15
0
26 Nov 2022
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic
  Reparameterization
Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic ReparameterizationNeural Information Processing Systems (NeurIPS), 2022
Sam Daulton
Xingchen Wan
David Eriksson
Maximilian Balandat
Michael A. Osborne
E. Bakshy
203
54
0
18 Oct 2022
Sample-Then-Optimize Batch Neural Thompson Sampling
Sample-Then-Optimize Batch Neural Thompson SamplingNeural Information Processing Systems (NeurIPS), 2022
Zhongxiang Dai
Yao Shu
Bryan Kian Hsiang Low
Patrick Jaillet
AAML
179
30
0
13 Oct 2022
Tree ensemble kernels for Bayesian optimization with known constraints
  over mixed-feature spaces
Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spacesNeural Information Processing Systems (NeurIPS), 2022
Alexander Thebelt
Calvin Tsay
Robert M. Lee
Nathan Sudermann-Merx
David Walz
B. Shafei
Ruth Misener
UQCVBDL
313
13
0
02 Jul 2022
Multi-Objective Hyperparameter Optimization in Machine Learning -- An
  Overview
Multi-Objective Hyperparameter Optimization in Machine Learning -- An OverviewACM Transactions on Evolutionary Learning and Optimization (TELO), 2022
Florian Karl
Tobias Pielok
Julia Moosbauer
Florian Pfisterer
Stefan Coors
...
Jakob Richter
Michel Lang
Eduardo C. Garrido-Merchán
Juergen Branke
J. Herbinger
AI4CE
344
84
0
15 Jun 2022
Machine Learning for Combinatorial Optimisation of Partially-Specified
  Problems: Regret Minimisation as a Unifying Lens
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens
Stefano Teso
Laurens Bliek
Andrea Borghesi
M. Lombardi
Neil Yorke-Smith
Tias Guns
Baptiste Caramiaux
178
3
0
20 May 2022
Lossy compression of matrices by black-box optimisation of mixed integer
  nonlinear programming
Lossy compression of matrices by black-box optimisation of mixed integer nonlinear programmingScientific Reports (Sci Rep), 2022
T. Kadowaki
Mitsuru Ambai
182
13
0
22 Apr 2022
Bayesian Optimization For Multi-Objective Mixed-Variable Problems
Bayesian Optimization For Multi-Objective Mixed-Variable ProblemsStructural And Multidisciplinary Optimization (SMO), 2022
Haris Moazam Sheikh
P. Marcus
202
18
0
30 Jan 2022
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
404
30
0
16 Dec 2021
Bayesian Optimization for auto-tuning GPU kernels
Bayesian Optimization for auto-tuning GPU kernelsInternational Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), 2021
Floris-Jan Willemsen
Rob van Nieuwpoort
Ben van Werkhoven
125
22
0
26 Nov 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Katharina Eggensperger
421
122
0
14 Sep 2021
Counterfactual Explanations for Arbitrary Regression Models
Counterfactual Explanations for Arbitrary Regression Models
Thomas Spooner
Danial Dervovic
Jason Long
Jon Shepard
Jiahao Chen
Daniele Magazzeni
172
30
0
29 Jun 2021
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive
  Networks
Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive NetworksNeural Information Processing Systems (NeurIPS), 2021
Shibo Li
Robert M. Kirby
Shandian Zhe
282
13
0
18 Jun 2021
Bayesian Optimization over Hybrid Spaces
Bayesian Optimization over Hybrid SpacesInternational Conference on Machine Learning (ICML), 2021
Aryan Deshwal
Syrine Belakaria
J. Doppa
184
40
0
08 Jun 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
Fast Design Space Exploration of Nonlinear Systems: Part IIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE TCAD), 2021
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
232
6
0
05 Apr 2021
Mixed Variable Bayesian Optimization with Frequency Modulated Kernels
Mixed Variable Bayesian Optimization with Frequency Modulated KernelsConference on Uncertainty in Artificial Intelligence (UAI), 2021
Changyong Oh
E. Gavves
Max Welling
223
8
0
25 Feb 2021
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Adaptive Local Bayesian Optimization Over Multiple Discrete Variables
Taehyeon Kim
Jaeyeon Ahn
Nakyil Kim
Seyoung Yun
208
3
0
07 Dec 2020
AutoCP: Automated Pipelines for Accurate Prediction Intervals
AutoCP: Automated Pipelines for Accurate Prediction Intervals
Yao Zhang
W. Zame
M. Schaar
157
0
0
24 Jun 2020
Sample-Efficient Optimization in the Latent Space of Deep Generative
  Models via Weighted Retraining
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp
Erik A. Daxberger
José Miguel Hernández-Lobato
MedIm
268
161
0
16 Jun 2020
Black-box Mixed-Variable Optimisation using a Surrogate Model that
  Satisfies Integer Constraints
Black-box Mixed-Variable Optimisation using a Surrogate Model that Satisfies Integer Constraints
Laurens Bliek
Arthur Guijt
S. Verwer
Mathijs de Weerdt
136
21
0
08 Jun 2020
Gryffin: An algorithm for Bayesian optimization of categorical variables
  informed by expert knowledge
Gryffin: An algorithm for Bayesian optimization of categorical variables informed by expert knowledge
Florian Hase
Matteo Aldeghi
Riley J. Hickman
L. Roch
Alán Aspuru-Guzik
284
121
0
26 Mar 2020
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution
  Detection
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
385
66
0
11 Dec 2019
Black-box Combinatorial Optimization using Models with Integer-valued
  Minima
Black-box Combinatorial Optimization using Models with Integer-valued MinimaAnnals of Mathematics and Artificial Intelligence (AMAI), 2019
Laurens Bliek
S. Verwer
Mathijs de Weerdt
116
19
0
20 Nov 2019
Bayesian Optimisation over Multiple Continuous and Categorical Inputs
Bayesian Optimisation over Multiple Continuous and Categorical InputsInternational Conference on Machine Learning (ICML), 2019
Binxin Ru
A. Alvi
Vu Nguyen
Michael A. Osborne
Stephen J. Roberts
284
108
0
20 Jun 2019
1